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Nicolas Basbois & Damien Broizat
Institut Stanislas, Cannes - Lycée Jules Ferry

PROBLÈME : Fonction Digamma.

Partie préliminaire

III.1.

a. Soit x > 0. La fonction hx : t 7→ e−ttx−1 est continue sur ]0,+∞[ par produit de fonctions
continues, les fonctions exponentielle et puissances étant bien continues sur ]0,+∞[.
On a hx(t) ∼

t→0+
tx−1 = 1

t1−x avec 1−x < 1 et t2 e−ttx−1 = tx+1e−t −→
t→+∞

0 par croissance

comparée, d’où hx(t) = o
t→+∞

(
1
t2

)
.

Ainsi, par comparaison de fonctions positives et critère de Riemann en 0 et en +∞,
hx : t 7→ e−ttx−1 est intégrable sur ]0,+∞[.

On peut ainsi définir la fameuse fonction Gamma d’Euler Γ : x 7→
∫ +∞

0
e−ttx−1dt,

sur ]0,+∞[.

b. Soit x > 0. La fonction hx définie dans la question précédente est continue et stricte-
ment positive sur ]0,+∞[. La positivité de l’intégrale nous donne

∫ +∞
0 hx(t)dt ≥ 0 et

la continuité de hx implique qu’on ne pourrait avoir
∫ +∞

0 hx(t)dt = 0 que si hx était
identiquement nulle sur ]0,+∞[, ce qui n’est pas le cas.
Ainsi Γ(x) =

∫ +∞
0 hx(t)dt > 0, et ce pour tout x > 0.

c. On définit h :
{

R∗+ × R∗+ −→ R
(x, t) 7−→ hx(t) = e−ttx−1 .

– Pour tout t > 0, x 7→ h(x, t) est de classe C1 (et même C∞ en fait) sur R∗+. On a donc

l’existence de
∂h

∂x
sur tout (R∗+)2 et, pour tout t > 0, la continuité de x 7→ ∂h

∂x
(x, t) sur

R∗+.

Notons d’ailleurs qu’on a, pour tout (x, t) ∈ (R∗+)2,
∂h

∂x
(x, t) = ln(t)e−ttx−1.

– Pour tout x > 0, t 7→ ∂h

∂x
(x, t) est continue (donc continue par morceaux) sur R∗+.

– Soit [a, b] un segment de R∗+. On a donc 0 < a ≤ b.

∀(x, t) ∈ [a, b]× R∗+,
∣∣∣∣∂h∂x(x, t)

∣∣∣∣ ≤ { | ln(t)|e−tta−1 si t ≤ 1
ln(t)e−ttb−1 si t > 1 .

Notons donc ϕ la fonction définie sur R∗+ par ϕ(t) =
{
| ln(t)|e−tta−1 si t ≤ 1
ln(t)e−ttb−1 si t > 1 . Cette

fonction est continue par morceaux (et même continue en fait).
De plus, pour t > 1, on a t2ϕ(t) = t1+b ln(t)e−t, donc t2ϕ(t) −→

t→+∞
0 par croissance

comparée, d’où ϕ(t) = o
t→+∞

(
1
t2

)
. Et, pour t ∈]0, 1], on a t1−

a
2ϕ(t) = t

a
2 | ln(t)|e−t −→

t→0+

0 (toujours par croissance comparée, car a > 0), donc ϕ(t) = o
t→0+

(
1

t1−
a
2

)
, avec 1− a

2 <
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1.
Donc ϕ est intégrable sur ]0,+∞[.
On en déduit l’hypothèse de domination sur tous les segments de ]0,+∞[.

Cela prouve finalement que Γ est de classe C1 sur ]0,+∞[, donc dérivable, avec :

∀x > 0, Γ′(x) =
∫ +∞

0

∂h

∂x
(x, t)dt =

∫ +∞

0
ln(t)e−ttx−1dt.

III.2. Pour tout entier n ≥ 2, on pose un =
∫ n

n−1

1
t
dt− 1

n
.

a. Notons f :
{

[1,+∞[ −→ R
t 7−→ 1

t

. Comme la fonction f est continue (donc continue par

morceaux), décroissante et à valeurs positives, un théorème du cours indique que la série∑
n≥2

(∫ n
n−1 f(t)dt− f(n)

)
converge, c’est-à-dire que

∑
n≥2

un converge.

b. Pour tout entier n ≥ 1, on pose Hn =
(

n∑
k=1

1
k

)
− ln(n).

Pour n ≥ 2, on a
n∑
k=2

uk =
∫ n

1
dt
t −

n∑
k=2

1
k par relation de Chasles, d’où

n∑
k=2

uk = ln(n) + 1−
n∑
k=1

1
k = 1−Hn.

Comme la suite
(

n∑
k=2

uk

)
n≥2

converge par la question précédente, il s’ensuit que la suite

(Hn)n≥1 converge.

On note dans la suite γ = lim
n→+∞

Hn, et on définit la fonction Digamma ψ, pour x ∈

]0,+∞[, par ψ(x) = Γ′(x)
Γ(x) .

Expression de la fonction Digamma à l’aide d’une série

III.3. Pour x ∈]0,+∞[ et pour tout entier n ≥ 1, on définit la fonction fn sur ]0,+∞[ par :

fn : t 7→
{ (

1− t
n

)n
tx−1 si t ∈]0, n]

0 si t > n
.

a. On peut établir l’inégalité souhaitée par simple étude de la fonction x 7→ ln(1−x)+x sur
]−∞, 1[, ou bien par un argument de convexité : en effet la fonction ln est notoirement
concave sur R∗+, donc son graphe est au-dessous de chacune de ses tangentes. Comme la
tangente en x = 1 a pour équation y = x − 1, on en déduit : ∀x ∈ R∗+, ln(x) ≤ x − 1. Il
vient ensuite, via deux changements de variable successifs : ∀x > −1, ln(1 + x) ≤ x, puis
∀x < 1, ln(1− x) ≤ −x.

Ensuite, soit n ≥ 1 (et, normalement, x > 0 est déjà fixé aussi dès l’énoncé de la question
III.3.). La fonction fn est positive par définition.
De plus, pour tout t ∈]0, n[, fn(t) = en ln(1− t

n)tx−1, avec ln
(
1− t

n

)
≤ − t

n par la question
précédente, vu qu’on a bien t

n < 1 pour t ∈]0, n[. On en déduit, par croissance de l’expo-

nentielle et produit par une quantité positive : fn(t) ≤ en×(− t
n)tx−1 = e−ttx−1. Enfin fn

est nulle sur [n,+∞[, tandis que la fonction t 7→ e−ttx−1 y est positive, d’où finalement
l’encadrement :

∀t > 0, 0 ≤ fn(t) ≤ e−ttx−1.

b. Comme demandé, on applique le théorème de convergence dominée :
– Pour tout n ≥ 1, fn est continue par morceaux sur R∗+.
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– Soit t > 0. Il existe N ∈ N tel que N ≥ t, par exemple N = btc + 1. Alors, pour
tout n ≥ N , t ∈]0, n], et donc fn(t) =

(
1− t

n

)n
tx−1. Or,

(
1− t

n

)n = en ln(1− t
n), et

ln
(
1− t

n

)
= − t

n + o
(

1
n

)
, donc

(
1− t

n

)n = en(−
t
n

+o( 1
n)) = e−t+o(1) −→

n→+∞
e−t par

continuité de l’exponentielle. Donc fn(t) −→
n→+∞

e−ttx−1.

On a ainsi prouvé que (fn)n≥1 converge simplement sur R∗+ vers la fonction t 7→ e−ttx−1.
– De plus, pour tout n ≥ 1 et pour tout t > 0, |fn(t)| ≤ e−ttx−1 par la question

précédente, et on a prouvé dans la première question du problème que la fonction
t 7→ e−ttx−1 est (continue bien sûr et) intégrable sur R∗+.

Donc, par le théorème de convergence dominée,
∫ +∞

0
fn(t)dt −→

n→+∞

∫ +∞

0
e−ttx−1dt.

Comme fn est nulle sur [n,+∞[, cela donne finalement :∫ n

0

(
1− t

n

)n
tx−1dt −→

n→+∞
Γ(x),

et ce raisonnement a bien été mené pour tout x > 0.

III.4. Pour tout entier naturel n et tout x > 0, on pose In(x) =
∫ 1

0
(1− u)nux−1du.

a. Soient n ∈ N∗ et x > 0.
La fonction α : u 7→ (1− u)nux−1 est bien définie et continue sur ]0, 1].
De plus, α(u) ∼

u→0+
ux−1 = 1

u1−x , avec 1 − x < 1, donc α est intégrable sur ]0, 1] par

comparaison de fonctions positives et critère de Riemann.
Cela assure la bonne définition de In(x).
On définit maintenant sur ]0, 1] les fonctions α1 : u 7→ (1 − u)n et α2 : u 7→ ux

x . Ces
fonctions sont de classe C1, et on a α1(u)α2(u) qui admet une limite finie pour u −→ 0+,
en l’occurrence 0. On en déduit, par intégration par parties :

In(x) =
∫ 1

0
α1(u)α′2(u)du = α1(1)α2(1)− lim

u→0+
α1(u)α2(u)−

∫ 1

0
α′1(u)α2(u)du

= 0− 0 +
n

x

∫ 1

0
(1− u)n−1uxdu =

n

x
In−1(x+ 1).

b. Soit x > 0.
On a I0(x) =

∫ 1
0 u

x−1du =
[
ux

x

]1
0

= 1
x .

Soit n ≥ 1. On a, par une récurrence immédiate,
In(x) = n

xIn−1(x+ 1) = n
x ×

n−1
x+1In−2(x+ 2) = n!

x(x+1)···(x+n−1)I0(x+ n) = n!
x(x+1)···(x+n) .

c. La fonction t 7→ t
n réalise une bijection strictement croissante et de classe C1 de ]0, n] sur

]0, 1]. Via le changement de variable u = t
n , on obtient donc :∫ n

0

(
1− t

n

)n
tx−1dt =

∫ 1

0
(1− u)n(nu)x−1ndu = nx

∫ 1

0
(1− u)nux−1du = nxIn(x).

Le résultat de la question 3.b. se réécrit ainsi : Γ(x) = lim
n→+∞

nxIn(x). Et le calcul de la

question précédente permet de conclure :

Γ(x) = lim
n→+∞

nx × n!
x(x+ 1) · · · (x+ n)

= lim
n→+∞

n!nx
n∏
k=0

(x+ k)
.

Cette relation est appelée formule de Gauss (selon l’énoncé, mais n’est-ce pas plutôt la
formule dite d’Euler dans la littérature ?).

III.5. Soient n ∈ N∗ et x > 0.
L’indication donnée (fallait-il la prouver ?) est immédiate en remarquant qu’on a
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exHn = e
x

nP
k=1

1
k
e−x ln(n) =

(
n∏
k=1

e
x
k

)
× 1

nx .

Ensuite, d’après la formule de Gauss établie à la question précédente, on a :

1
Γ(x)

= lim
n→+∞

n∏
k=0

(x+ k)

n!nx
= lim

n→+∞

x

nx
×

n∏
k=1

(k + x)

n∏
k=1

k

= lim
n→+∞

x

nx

n∏
k=1

(
1 +

x

k

)
.

Grâce à l’indication fournie, on réécrit :

1
Γ(x)

= lim
n→+∞

xexHn

n∏
k=1

[(
1 +

x

k

)
e−

x
k

]
.

Or Hn −→
n→+∞

γ donc, par continuité de l’exponentielle, exHn −→
n→+∞

exγ et, finalement, par

produit de limites,
1

Γ(x)
= xeγx lim

n→+∞

n∏
k=1

[(
1 +

x

k

)
e−

x
k

]
.

Cette formule est appelée formule de Weierstrass.

III.6.

a. On note qu’on pourrait répondre directement à la question à l’aide d’un DL d’ordre 2.
Si l’on veut rester dans les clous du sujet, on commence par réécrire la formule précédente :

n∏
k=1

[(
1 +

x

k

)
e−

x
k

]
−→

n→+∞

1
Γ(x)xeγx

.

Par continuité de ln, on en déduit :

ln

(
n∏
k=1

[(
1 +

x

k

)
e−

x
k

])
−→

n→+∞
ln
(

1
Γ(x)xeγx

)
, i. e.

n∑
k=1

[
ln
(

1 +
x

k

)
− x

k

]
−→

n→+∞
− ln

(
Γ(x)xeγx

)
.

En particulier, on a prouvé que la série
∑
k≥1

[
ln
(
1 + x

k

)
− x

k

]
converge. Ceci ayant été

démontré pour tout x > 0, on a établi la convergence simple de la série de fonctions∑
k≥1

gk sur ]0,+∞[, où l’on pose gk : x 7→ ln
(
1 + x

k

)
− x

k .

b. On note g =
+∞∑
k=1

gk sur ]0,+∞[.

Outre la convergence de
∑
k≥1

gk vers g établie à la question précédente, on a :

– Les fonctions gk sont toutes de classe C1 sur ]0,+∞[.
– Pour tout k ≥ 1, pour tout x > 0, g′k(x) = 1

k+x −
1
k = − x

k(k+x) .
Soit [a, b] un segment de R∗+. On a donc 0 < a ≤ b. Alors pour tout k ≥ 1 et tout
x ∈ [a, b], |g′k(x)| ≤ b

k2 et, comme
∑
k≥1

b
k2 converge, on a établi la convergence normale,

donc uniforme, de
∑
k≥1

g′k sur [a, b].

On en déduit que g est de classe C1, avec : ∀x > 0, g′(x) =
+∞∑
k=1

g′k(x) =
+∞∑
k=1

(
1

k+x −
1
k

)
.

c. Par la question 6.a., on a, pour tout x > 0,

g(x) = − ln
(
Γ(x)xeγx

)
= − ln

(
Γ(x)

)
− ln(x)− γx.
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Dérivant cette relation sur R∗+, on obtient :

g′(x) = −Γ′(x)
Γ(x)

− 1
x
− γ,

c’est-à-dire, vu que ψ = Γ′

Γ , ψ(x) = −g′(x)− 1
x − γ.

Comme −g′(x) = −
+∞∑
k=1

(
1

k+x −
1
k

)
=

+∞∑
k=1

(
− 1
k+x + 1

k

)
, on a finalement établi :

∀x > 0, ψ(x) = −1
x
− γ +

+∞∑
k=1

(
1
k
− 1
k + x

)
.

III.7.

a. Posant x = 1 dans la formule précédente, on trouve : ψ(1) = −1 − γ +
+∞∑
k=1

(
1
k −

1
k+1

)
,

d’où, par télescopage, ψ(1) = −1− γ + 1 = −γ.
De plus Γ(1) =

∫ +∞
0 e−tdt = lim

X→+∞
[−e−t]X0 = lim

X→+∞
1 − e−X = 1 donc, vu que

ψ(1) = Γ′(1)
Γ(1) , on obtient Γ′(1) = −γ.

Mais en reprenant l’expression obtenue à la question 1.c., on constate que Γ′(1) =∫ +∞
0 e−t ln(t)dt, d’où finalement :∫ +∞

0
e−t ln(t)dt = −γ.

b. D’après la formule de la question 6.c., on a, pour tout x > 0,

ψ(x+ 1)− ψ(x) = − 1
x+ 1

+
1
x

+
+∞∑
k=1

(
1
k
− 1
k + x+ 1

)
−

+∞∑
k=1

(
1
k
− 1
k + x

)

=
1
x
− 1
x+ 1

+
+∞∑
k=1

(
1
k
− 1
k + x+ 1

− 1
k

+
1

k + x

)
par somme de séries convergentes. Et donc :

ψ(x+ 1)− ψ(x) =
1
x
− 1
x+ 1

+
+∞∑
k=1

(
1

k + x
− 1
k + x+ 1

)
=

+∞∑
k=0

(
1

k + x
− 1
k + x+ 1

)
=

1
x
.

Remarque. On aurait aussi pu procéder ainsi :

ψ(x+ 1)− ψ(x) =
Γ′(x+ 1)
Γ(x+ 1)

− Γ′(x)
Γ(x)

=
d

dx

(
ln
(

Γ(x+ 1)
Γ(x)

))
.

Or, il est bien connu que Γ(x+ 1) = xΓ(x) (il suffit d’intégrer par parties), donc

ψ(x+ 1)− ψ(x) =
d

dx
(ln(x)) =

1
x
.

En particulier, pour tout k ∈ N∗, ψ(k + 1)− ψ(k) = 1
k .

Il s’ensuit, pour tout entier n ≥ 2,

ψ(n) = ψ(1) +
n−1∑
k=1

(
ψ(k + 1)− ψ(k)

)
= −γ +

n−1∑
k=1

1
k
.

c. Soit x > 0 fixé. Pour tout k ∈ N, on définit jk :
{

R∗+ −→ R
y 7−→ 1

k+y+1 −
1

k+y+x
.

Cette notation est discutable : il aurait peut-être été préférable de noter jk,x, pour insister
sur le fait que l’on travaille à x > 0 fixé, et que la convergence uniforme étudiée ici ne
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porte que sur la variable y.
On peut réécrire jk(y) = k+y+x−k−y−1

(k+y+1)(k+y+x) = x−1
(k+y+1)(k+y+x) donc,

∀y > 0, |jk(y)| ≤ |x− 1|
(k + 1)(k + x)

.

Comme
∑
k≥0

|x−1|
(k+1)(k+x) est une série convergente, vu que |x−1|

(k+1)(k+x) ∼
k→+∞

|x−1|
k2 , on a la

convergence normale, donc uniforme, de
∑
k≥0

jk sur ]0,+∞[.

Ensuite, reprenant la formule de 6.c., on a, pour tout n ∈ N∗,

ψ(x+ n)− ψ(1 + n) = − 1
x+ n

+
1
n

+
+∞∑
k=1

(
1
k
− 1
k + x+ n

)
−

+∞∑
k=1

(
1
k
− 1
k + 1 + n

)
,

et selon le même principe de calcul qu’à la question précédente, on aboutit à :

ψ(x+ n)− ψ(1 + n) =
+∞∑
k=0

(
1

k + 1 + n
− 1
k + x+ n

)
=

+∞∑
k=0

jk(n).

Or, pour tout k ∈ N, jk(n) −→
n→+∞

0 donc, par le théorème de la double limite (qui

s’applique ici car la série de fonctions étudiée converge uniformément sur un voisinage de
+∞),

lim
n→+∞

(
ψ(x+ n)− ψ(1 + n)

)
=

+∞∑
k=0

lim
n→+∞

jk(n) = 0.

III.8. Par analyse-synthèse :
– Analyse : Soit f solution. On va montrer que f vérifie la formule de ψ établie en 6.c.,

à savoir :

∀x > 0, f(x) = −1
x
− γ +

+∞∑
k=1

(
1
k
− 1
k + x

)
Puisque 1

t = f(t+ 1)− f(t) pour tout t > 0, on a

+∞∑
k=1

(
1
k
− 1
k + x

)
=

+∞∑
k=1

(
f(k + 1)− f(k)− f(k + x+ 1) + f(k + x)

)

= lim
n→+∞

(
n∑
k=1

(
f(k + 1)− f(k)

)
+

n∑
k=1

(
f(k + x)− f(k + x+ 1)

))

= lim
n→+∞

f(n+ 1)− f(1)︸︷︷︸
=−γ

+f(1 + x)− f(n+ x+ 1)


= f(x+ 1) + γ − lim

n→+∞

(
f(x+ 1 + n)− f(1 + n)

)
︸ ︷︷ ︸

=0

= f(x) +
1
x

+ γ,

ce qui montre bien la relation voulue, et donc f = ψ.
– Synthèse : La seule solution éventuelle au problème est donc ψ. Mais on a prouvé

en 7.a., 7.b. et 7.c. que ψ satisfait les trois conditions voulues, donc finalement ψ est
solution, et c’est la seule.
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