

ÉCOLE NATIONALE DES PONTS et CHAUSSÉES, ISAE-SUPAERO, ENSTA PARIS, TÉLÉCOM PARIS, MINES PARIS, MINES SAINT-ÉTIENNE, MINES NANCY, IMT ATLANTIQUE, ENSAE PARIS, CHIMIE PARISTECH - PSL.

Concours Mines-Télécom, Concours Centrale-Supélec (Cycle International).

CONCOURS 2025

PREMIÈRE ÉPREUVE DE MATHÉMATIQUES

Notations

- Dans tout le sujet, n est un entier naturel fixé non nul.
- Dans tout le sujet, $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$ est un espace probabilisé fini.
- On note $L^0(\Omega)$ le **R**-espace vectoriel des variables aléatoires réelles definies sur Ω . On notera que si $X \in L^0(\Omega)$, $X(\Omega)$ est une partie finie de **R**. On confondra systématiquement variable aléatoire nulle et variable aléatoire presque sûrement nulle.
- Si $X \in L^0(\Omega)$, on note $\mathbf{E}(X)$ son espérance.
- Une variable aléatoire $X \in L^0(\Omega)$ suit une loi de Rademacher si :

$$X(\Omega) = \{-1, 1\}$$
 et $\mathbf{P}(X = 1) = \mathbf{P}(X = -1) = \frac{1}{2}$.

Inégalité de Hölder

Soient $p, q \in]1, +\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. Soient $X, Y \in L^0(\Omega)$ que l'on suppose toutes les deux positives.

1 ▷ Montrer que

$$\forall x, y \in \mathbf{R}_+, \quad xy \le \frac{x^p}{p} + \frac{y^q}{q}.$$

2 ⊳ En déduire l'inégalité suivante (inégalité de Hölder) :

$$\mathbf{E}(XY) \le \left(\mathbf{E}\left(X^{p}\right)\right)^{1/p} \left(\mathbf{E}\left(Y^{q}\right)\right)^{1/q}.$$

On pourra commencer par traiter le cas où $\mathbf{E}(X^p) = \mathbf{E}(Y^q) = 1$.

Une inégalité de déviation

Soit $(X_i)_{i\in \llbracket 1,n\rrbracket}$ une suite de variables aléatoires indépendantes suivant toutes une loi de Rademacher.

 $3 \triangleright \text{On admet que}$:

$$\forall x \in \mathbb{R}, \ ch(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$$

$$\forall x \in \mathbb{R}, \ e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

 $\forall x \in \mathbb{R}, \ ch(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$ \(\forall \text{x} \in \mathbb{R}, \ e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} \) \(\text{pour les premières années} \)

Montrer que

$$\forall t \in \mathbf{R}, \quad \operatorname{ch}(t) \le e^{t^2/2}.$$

 $\mathbf{4} \triangleright \text{Montrer que} : \text{pour tout } t \geq 0, \text{ pour tout } (c_1, \dots, c_n) \in \mathbf{R}^n,$

$$\mathbf{E}\left(\exp\left(t\sum_{i=1}^n c_i X_i\right)\right) \le \exp\left(\frac{t^2}{2}\sum_{i=1}^n c_i^2\right).$$

5 \triangleright En déduire que : pour tout $t \ge 0$, pour tout $x \ge 0$ et pour tout $(c_1, \ldots, c_n) \in \mathbf{R}^n$,

$$\mathbf{P}\left(\exp\left(x\left|\sum_{i=1}^{n}c_{i}X_{i}\right|\right) > e^{tx}\right) \leq 2e^{-tx}\exp\left(\frac{x^{2}\sum_{i=1}^{n}c_{i}^{2}}{2}\right).$$

On pourra utiliser l'inégalité de Markov.

6 ▷ Montrer que : pour tout $t \ge 0$ et pour tout $(c_1, \ldots, c_n) \in \mathbf{R}^n$ non nul,

$$\mathbf{P}\left(\left|\sum_{i=1}^{n} c_i X_i\right| > t\right) \le 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} c_i^2}\right).$$

Inégalités de Khintchine

Soit $p \in [1, +\infty[$. Soit $(X_i)_{i \in [1,n]}$ une suite de variables aléatoires indépendantes suivant toutes une loi de Rademacher. Soit $(c_1, \ldots, c_n) \in \mathbf{R}^n$.

 $7 \triangleright \text{Soit } X$ une variable aléatoire réelle positive et finie. Soit F_X la fonction définie pour tout $t \geq 0$, par

$$F_X(t) = \mathbf{P}(X > t)$$
.

Montrer que l'intégrale $\int_{0}^{+\infty}t^{p-1}F_{X}\left(t\right) \mathrm{d}t$ converge, puis que

$$\mathbf{E}\left(X^{p}\right) = p \int_{0}^{+\infty} t^{p-1} F_{X}\left(t\right) dt.$$

8 > On suppose dans cette question que $\sum_{i=1}^{n} c_i^2 = 1$. Montrer que l'intégrale $\int_0^{+\infty} t^3 e^{-t^2/2} dt$ converge, puis que

$$\mathbf{E}\left(\left(\sum_{i=1}^{n} c_i X_i\right)^4\right) \le 8 \int_0^{+\infty} t^3 e^{-t^2/2} dt.$$

9 ⊳ Montrer que

$$\mathbf{E}\left(\left(\sum_{i=1}^{n} c_i X_i\right)^2\right) = \sum_{i=1}^{n} c_i^2.$$

Dans les questions numérotées de 10 > à 11 >, on suppose 1 $\leq p < 2.$

 $\mathbf{10} \triangleright \text{ Justifier qu'il existe } \theta \in]0,1[\text{ tel que } \frac{1}{2} = \frac{\theta}{p} + \frac{1-\theta}{4}.$

11 ▷ Montrer que

$$\mathbf{E}\left(\left(\sum_{i=1}^n c_i X_i\right)^2\right) \leq \mathbf{E}\left(\left|\sum_{i=1}^n c_i X_i\right|^p\right)^{2\theta/p} \mathbf{E}\left(\left|\sum_{i=1}^n c_i X_i\right|^4\right)^{(1-\theta)/2}.$$

Fin