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Probléme 2

Soit (€2, A, P) un espace probabilisé, par la suite, les variables aléatoires considérées sont des variables
aléatoires réelles discretes ou ad densité. Si X est une variable aléatoire sur (2, A, P), la fonction génératrice
des moments de X, lorsqu’elle existe, est la fonction numérique de la variable réelle t, Mx : ¢t — E(etX), ot
E(etX) désigne I'espérance de la variable aléatoire e!*X.

Partie I
Cas particulier : variables aléatoires discretes finies

Soit X une variable aléatoire discréte prenant un nombre fini de valeurs z,...,x, avec les probabilités
respectives p1, ..., py, olt r € N*. Dans cette partie, on définit la fonction ¢ x sur R* par,

Vi€ R, px(r) = 1 In(Mx(1)

1. Déterminer Mz, lorsque Z suit une loi de Bernoulli de parametre p, p € [0, 1].

2. Montrer que Mx est de classe € sur R, et que pour tout entier naturel k, M )((k ) (0) = B(X%).

3. (a) Montrer que px est bien définie sur R* et prolongeable par continuité en 0. On pose ¢ x (0) = E(X)
et on note encore ¢ x la fonction ainsi prolongée.

(b) Démontrer que ¢ x est dérivable en 0 et calculer ¢’y (0) en fonction de la variance V(X)) de X.
1
(c) i. Montrer que pour toutu <0,e* <1+ u+ 5u2.

ii. Montrer que si X ne prend que des valeurs négatives ou nulles, alors, pour tout ¢t > 0,
t
px(t) < B(X) + 5 B(X?),

(d) i. Pour tout entier i tel que 1 < i < r, on note f; la fonction définie sur R, par ¢ — €e'®i. Montrer
que la famille (f1, ..., f,) est libre.

ii. En déduire que deux variables discretes finies X et Y ont la méme loi si, et seulement si, les
fonctions ¢ x et ¢y sont égales.

(e) Montrer que si X et Y sont des variables discretes finies indépendantes, alors, o x v = px + ¢v.

(f) En déduire M, lorsque X suit une loi binomiale de parametre s et p, s est un entier naturel non
nulet0 <p<1.

(g) On dit qu'une variable aléatoire réelle X est symétrique si X et —X ont la méme loi. Montrer que
px est impaire si, et seulement si, X est une variable aléatoire réelle symétrique.

4. On considere une suite (X,,),>1 de variables aléatoires discretes finies mutuellement indépendantes
sur (2, A, P), qui suivent la méme loi que X. On note m 1'espérance de X et o son écart-type que 1'on
suppose strictement positif.

Sn — E(Sn)

On pose, pour tout entier naturel nonnul, S, = X1 + Xo +... + X, et S;, = 750
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(a) Montrer que, pour tout entier naturel non nul n et tout réel non nul ¢,

w%m—‘mm+§%XG%ﬂ.

g

(b) En déduire que lim pg-(t) = %
n—oo

Partie 11
Cas des variables aléatoires discretes réelles infinies

Soit X une variable aléatoire discrete réelle infinie, notons Ix 1’ensemble des réels t pour lesquels M x existe.
1. (a) Montrer que, pour tous réels a, b, c tels que a < b < cet tout réel z, elT < e 4 o0,
(b) En déduire que Ix est un intervalle contenant 0.

2. Soit Y une variable aléatoire discrete réelle qui suit une loi de Poisson de parametre A > 0.
Déterminer la fonction génératrice des moments My de Y.

3. Onsuppose que la fonction My est définie sur un intervalle de la forme | —a, a[, (@ > 0). Notons (z,, )nen
une énumération des valeurs de X.

Posons, pour tout n € Net tout ¢ €] — a, af, u,(t) = P(X = z,,)e". Soit & > 0 tel que [—a, a] C] — a, al,
et soit p €la, al.

(a) Montrer que, pour tout k € N, tout £ €] — a, o et tout n € N, [ulf? (1) < P(X = ) (|an]) el !, ot
ult) désigne la dérivée k-eme de la foncti
N gne la dérivée k-eme de la fonction u,,.

(b) Montrer que, pour tout k € N, il existe M, > 0, pour tout ¢ €] — o, af et tout n € N,
[ (1) < MP(X = ay)erl.

(c) En déduire que Mx est de classe €°° sur | — a, a[, et que pour tout k € N, E(X*) = Mgf)(()).

4. En déduire l'espérance et la variance d'une variable aléatoire Y qui suit une loi de Poisson de parametre
A> 0.

Partie II1
Cas des variables aléatoires a densité

S5i X est une variable aléatoire ad densité, on note Ix l'intervalle de R, qui contient 0, pour lequel M x existe.

1. Soient X et Y deux variables aléatoires ad densité indépendantes, qui admettent respectivement des
fonctions génératrices des moments My et My , montrer que Mxy = MxMy.

2. Soit X une variable aléatoire a densité possédant une fonction génératrice des moments Mx et une
densité f. On suppose que cette fonction génératrice des moments soit définie sur Iy =|a, b, (a,b) € R?,
a < 0 < b, et soit s un réel tel que, 0 < s < min(—a, b).

(a) Montrer que, pour tout k € N* ettout ¢t € R, [tF| < Hesltl,
(b) En déduire que, pour tout k € N*, E(] X |¥) est finie.

(c) Montrer que, pour tout ¢t €] — s, s[, Mx(t) = Z E(Xk)ﬁ.
k=0

(d) En déduire que, pour tout k € N, Mgf)(()) = B(XF).
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