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Problème 2
Soit (Ω, A, P ) un espace probabilisé, par la suite, les variables aléatoires considérées sont des variables
aléatoires réelles discrètes ou àă densité. Si X est une variable aléatoire sur (Ω, A, P ), la fonction génératrice
des moments de X , lorsqu’elle existe, est la fonction numérique de la variable réelle t, MX : t → E(etX), où
E(etX) désigne l’espérance de la variable aléatoire etX .

Partie I
Cas particulier : variables aléatoires discrètes finies

Soit X une variable aléatoire discrète prenant un nombre fini de valeurs x1, ..., xr avec les probabilités
respectives p1, ..., pr, où r ∈ N

∗. Dans cette partie, on définit la fonction ϕX sur R∗ par,

∀t ∈ R
∗, ϕX(t) =

1

t
ln(MX(t))

1. Déterminer MZ , lorsque Z suit une loi de Bernoulli de paramètre p, p ∈ [0, 1].

2. Montrer que MX est de classe C∞ sur R, et que pour tout entier naturel k, M (k)
X (0) = E(Xk).

3. (a) Montrer que ϕX est bien définie sur R∗ et prolongeable par continuité en 0. On pose ϕX(0) = E(X)
et on note encore ϕX la fonction ainsi prolongée.

(b) Démontrer que ϕX est dérivable en 0 et calculer ϕ′
X(0) en fonction de la variance V (X) de X .

(c) i. Montrer que pour tout u ≤ 0, eu ≤ 1 + u+
1

2
u2.

ii. Montrer que si X ne prend que des valeurs négatives ou nulles, alors, pour tout t ≥ 0,

ϕX(t) ≤ E(X) +
t

2
E(X2).

(d) i. Pour tout entier i tel que 1 ≤ i ≤ r, on note fi la fonction définie sur R, par t 7→ etxi . Montrer
que la famille (f1, ..., fn) est libre.

ii. En déduire que deux variables discrètes finies X et Y ont la même loi si, et seulement si, les
fonctions ϕX et ϕY sont égales.

(e) Montrer que si X et Y sont des variables discrètes finies indépendantes, alors, ϕX+Y = ϕX + ϕY .

(f) En déduire MX , lorsque X suit une loi binomiale de paramètre s et p, s est un entier naturel non
nul et 0 ≤ p ≤ 1.

(g) On dit qu’une variable aléatoire réelle X est symétrique si X et −X ont la même loi. Montrer que
ϕX est impaire si, et seulement si, X est une variable aléatoire réelle symétrique.

4. On considère une suite (Xn)n≥1 de variables aléatoires discrètes finies mutuellement indépendantes
sur (Ω, A, P ), qui suivent la même loi que X . On note m l’espérance de X et σ son écart-type que l’on
suppose strictement positif.

On pose, pour tout entier naturel non nul, Sn = X1 +X2 + ...+Xn et S∗
n =

Sn − E(Sn)
√

V (Sn)
.
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(a) Montrer que, pour tout entier naturel non nul n et tout réel non nul t,

ϕS∗

n
(t) =

−m√
n

σ
+

√
n

σ
ϕX

(

t

σ
√
n

)

.

(b) En déduire que lim
n→∞

ϕS∗

n
(t) =

t

2
.

Partie II
Cas des variables aléatoires discrètes réelles infinies

Soit X une variable aléatoire discrète réelle infinie, notons IX l’ensemble des réels t pour lesquels MX existe.

1. (a) Montrer que, pour tous réels a, b, c tels que a < b < c et tout réel x, ebx ≤ eax + ecx.

(b) En déduire que IX est un intervalle contenant 0.

2. Soit Y une variable aléatoire discrète réelle qui suit une loi de Poisson de paramètre λ > 0.
Déterminer la fonction génératrice des moments MY de Y .

3. On suppose que la fonctionMX est définie sur un intervalle de la forme ]−a, a[, (a > 0). Notons (xn)n∈N

une énumération des valeurs de X .
Posons, pour tout n ∈ N et tout t ∈]− a, a[, un(t) = P (X = xn)e

txn . Soit α > 0 tel que [−α, α] ⊂]− a, a[,
et soit ρ ∈]α, a[.

(a) Montrer que, pour tout k ∈ N, tout t ∈]−α, α[ et tout n ∈ N, |u(k)n (t)| ≤ P (X = xn)(|xn|)keρ|xn|, où
u
(k)
n désigne la dérivée k-ème de la fonction un.

(b) Montrer que, pour tout k ∈ N, il existe Mk > 0, pour tout t ∈]− α, α[ et tout n ∈ N,

|u(k)n (t)| ≤MkP (X = xn)e
ρ|xn|.

(c) En déduire que MX est de classe C∞ sur ]− a, a[, et que pour tout k ∈ N, E(Xk) =M
(k)
X (0).

4. En déduire l’espérance et la variance d’une variable aléatoire Y qui suit une loi de Poisson de paramètre
λ > 0.

Partie III
Cas des variables aléatoires à densité

Si X est une variable aléatoire àă densité, on note IX l’intervalle de R, qui contient 0, pour lequel MX existe.

1. Soient X et Y deux variables aléatoires àă densité indépendantes, qui admettent respectivement des
fonctions génératrices des moments MX et MY , montrer que MX+Y =MXMY .

2. Soit X une variable aléatoire à densité possédant une fonction génératrice des moments MX et une
densité f . On suppose que cette fonction génératrice des moments soit définie sur IX =]a, b[, (a, b) ∈ R

2,
a < 0 < b, et soit s un réel tel que, 0 < s < min(−a, b).

(a) Montrer que, pour tout k ∈ N
∗ et tout t ∈ R, |tk| ≤ k!

sk
es|t|.

(b) En déduire que, pour tout k ∈ N
∗, E(|X |k) est finie.

(c) Montrer que, pour tout t ∈]− s, s[, MX(t) =

∞
∑

k=0

E(Xk)
tk

k!
.

(d) En déduire que, pour tout k ∈ N, M (k)
X (0) = E(Xk).
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