Extrait du Problème N°1

Partie II

Une démonstration probabiliste du théorème de Stone-Weierstrass

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue et $n\in\mathbb{N}^*$.

- 1. Soit S_n une variable aléatoire suivant une loi binomiale de paramètres n et x, $x \in [0,1]$, on pose, pour tout $n \in \mathbb{N}^*$, $X_n = \frac{S_n}{S_n}$.
 - (a) Déterminer $E(X_n)$ et $V(X_n)$ respectivement l'espérance et la variance de X_n .
- (b) Justifier que, pour tout $\delta>0$, $P(|X_n-x|\geq\delta)\leq \frac{1}{4n\delta^2}$. 2. On introduit la variable aléatoire $Y_n=f(X_n)$ et on pose pour tout $x\in[0,1]$, $C_n(f)(x)=E(Y_n)$. Pour la suite de cette question, on se donne un réel $\varepsilon > 0$.
 - (a) Vérifier que $x \mapsto C_n(f)(x)$ est une fonction polynomiale définie sur [0,1].
 - (b) D'après le théorème de Heine, comme f est continue sur [0,1], alors il existe $\beta>0$ tel que, pour tout $(x_1, x_2) \in [0, 1] \times [0, 1], |x_1 - x_2| \le \beta \Rightarrow |f(x_1) - f(x_2)| \le \frac{\varepsilon}{2}$. (On ne vous demande pas de redémontrer ce résultat).

i. Montrer que
$$\left|\sum_{\left|\frac{k}{n}-x\right|\leq\beta}\left(f\left(\frac{k}{n}\right)-f(x)\right)P\left(X_n=\frac{k}{n}\right)\right|\leq\frac{\varepsilon}{2}$$

ii. Montrer que
$$\left|\sum_{\left|\frac{k}{n}-x\right|>\beta}\left(f\left(\frac{k}{n}\right)-f(x)\right)P\left(X_n=\frac{k}{n}\right)\right|\leq \frac{M}{2n\beta^2}, \text{ avec } M=\sup_{t\in[0,1]}|f(t)|.$$

Pr. ELAMIRI

www.iamateacher.org

- **1.** Soit S_n une variable aléatoire suivant une loi binomiale de paramètres n et x, $x \in [0,1]$, on pose, pour tout $n \in \mathbb{N}^*$, $X_n = \frac{S_n}{S_n}$.
 - (a) Déterminer $E(X_n)$ et $V(X_n)$ respectivement l'espérance et la variance de X_n .
 - (b) Justifier que, pour tout $\delta > 0$, $P(|X_n x| \ge \delta) \le \frac{1}{4n\delta^2}$.

1) a)
$$E(x_n) = E(\frac{s_n}{n})$$

$$=\frac{1}{n}$$
. $n\pi$ ($(ar S_n rB(n_1x))$

$$V(x_n) = V(\frac{S_n}{n})$$

$$=\frac{1}{n^2}n\chi(1-\chi)\left(S_n-B(n_1\chi)\right)$$

$$=\frac{\chi(1-\chi)}{\chi}$$

6) Poit 870.

$$\frac{\sqrt{(x'n)}}{s^2}$$

$$=\frac{\chi(1-\gamma)}{\kappa s^2}$$

Pour terminer, il sontlit de verilier que

cha:

$$\frac{\chi(1-\chi)}{\eta S^2} < \frac{1}{4\eta S^2} < -\gamma \chi(1-\chi) < \frac{1}{4}$$

www.iamateacher.org Pr. ELAMIRI

2) (a) Vérifier que $x \mapsto C_n(f)(x)$ est une fonction polynomiale définie sur [0,1]. Poit RE [011]. Ona:

Amsi, d'après la formale du transfert on a:

$$C_{n}(h)(h) = \sum_{k=0}^{\infty} f(\frac{k}{n}) P(x_{n} = \frac{k}{n})$$

$$= \frac{5}{4\pi} \frac{3(4)}{3(5)} P(S_n = k)$$

$$C_{n}(f(x)) = \sum_{k=0}^{\infty} f(\frac{k}{n}) G_{n} \times (1-x)$$

$$C_{n}(f(x)) = \sum_{k=0}^{\infty} f(\frac{k}{n}) G_{n} \times ($$

2) i. Montrer que
$$\left|\sum_{\left|\frac{k}{n}-x\right|\leq\beta}\left(f\left(\frac{k}{n}\right)-f(x)\right)P\left(X_{n}=\frac{k}{n}\right)\right|\leq\frac{\varepsilon}{2}$$

Soit $\chi\in\left[0.1\right]$. Soit $n\in\mathbb{N}^{*}$.

$$\left|\sum_{\left|\frac{k}{n}-x\right|\leq\beta}\left(f\left(\frac{k}{n}\right)-f(x)\right)P\left(X_{n}=\frac{k}{n}\right)\right|\leqslant\sum_{\left|\frac{k}{n}-x\right|\leq\beta}\left|\int_{\mathbb{R}^{n}}\frac{k}{n}\left|-\int_$$

$$\leq \frac{\sum_{i=1}^{\infty} P(X_{i} = \frac{k}{n})}{|k-n| \leq \beta}$$

2) ii. Montrer que
$$\left|\sum_{\left|\frac{k}{n}-x\right|>\beta}\left(f\left(\frac{k}{n}\right)-f(x)\right)P\left(X_n=\frac{k}{n}\right)\right|\leq \frac{M}{2n\beta^2}, \text{ avec } M=\sup_{t\in[0,1]}|f(t)|.$$

Soit $n\in\mathbb{N}$.

$$\left|\sum_{\left|\frac{k}{n}-x\right|>\beta}\left(f\left(\frac{k}{n}\right)-f(x)\right)P\left(X_{n}=\frac{k}{n}\right)\right| \leq \frac{1}{|\lambda|} \frac{|\lambda|}{|\lambda|} \frac{|\lambda|}{|\lambda|} + |\lambda| \frac{|\lambda|}{|\lambda|} + |\lambda|} + |\lambda| \frac{|\lambda|}{|\lambda|} + |\lambda|} + |\lambda|$$

$$=\frac{1}{2n\beta^2}$$