
1ère partie : Étude de l’application fm

1. R est un polynôme de R[X] de degré inférieur ou égal à n et admet n+1 racines xo, x1, · · · , xn

distinctes deux à deux, donc R est le polynôme nul.

2. Soit (λ, P,Q) ∈ R× P2
m.

fm(λ.P+Q) = ((λ.P +Q)(xo), · · · , (λ.P +Q)(xn)) = ((λ.P (xo) +Q(xo), · · · , (λ.P (xn) +Q(xn))

= λ.fm(P ) + fm(Q).

3. (a) P ∈ Kerfm équivaut à P (xi) = 0, pour tout i ∈ {0, 1, · · · , n}, donc le polynôme

π = (X − xo)(X − x1) · · · (X − xn) divise P ; et, comme deg(P ) ≤ m et deg(π) = n + 1, donc

il existe Q ∈ Pm−n−1 tel que P = Q π. D’où, Kerfm ⊆ {Q π ; Q ∈ Pm−n−1}. Pour l’autre

inclusion, il suffit de remarquer que le polynôme π admet xo, x1, · · · , xn comme racines.

(b) D’abord Kerfm et Pn sont des sous espaces vectoriels de Pm, puisque n+ 1 ≤ m.

∗ Si P ∈ Kerfm ∩ Pm, alors pour tout i ∈ {0, 1, · · · , n}, P (xi) = 0, et deg(P ) ≤ n; et; d’après

la question 1), le polynôme P est nul. D’où, Ker fm ∩ Pm = {0}.
∗ Soit H ∈ Pm. On effectue la division euclidienne de H par π, il existe (Q,R) ∈ R[X]2 tel que

H = Q π +R et deg(R) < deg(π) = n+ 1; donc H ∈ Kerfm + Pn. D’où, Pm = Kerfm + Pn.

Ainsi, Pm = Kerfm

⊕
Pn.

(c) dim(Kerfm) = dim(Pm)− dim(Pn) = (m+ 1)− (n+ 1) = m− n.

(X i π)0≤i≤m−n−1 est une famille de polynômes échelonnées de Kerfm, donc elle est libre; et,

comme son cardinal est égal à la dimension de Kerfm, donc (X i π)0≤i≤m−n−1 est une base de

Kerfm.

(d) ∗ rg(fm) = dim(Pm)− dim(Kerfm) = (m+ 1)− (m− n) = n+ 1.

∗ Comme Im(fm) ⊆ Rn+1 et rg(fm) = n + 1 = dim(Rn+1), donc Im(fm) = Rn+1. Ainsi,

l’application fm est surjective.

4. Dans cette question, m ≤ n.
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(a) Si P ∈ Kerfm, alors les n + 1 réels xo, x1, · · · , xn sont des racines de P deux à deux dis-

tinctes et deg(P ) ≤ m < n+ 1, donc P est nul. D’où, fm est injectif.

(b) fm étant injective, donc Kerfm = {0}; et, par suite

rg(fm) = dim(Pm)− dim(Kerfm) = m+ 1.

(c) fm est surjective si, et seulement si, rg(fm) = dim(Rn+1) si, et seulement si, m = n.

5. (a) Pour tout i ∈ {0, 1, · · · , n}, deg(Li) = n.

Soit (k, i) ∈ {0, 1, · · · , n}2.

Si k = i, Li(xi) =
∏

0≤j≤n
j 6=k

(xi − xj)

(xi − xj)
= 1,

si k 6= i,
∏

0≤j≤n
j 6=k

(xk − xj) = 0; et, par suite Li(xk) =

∏
0≤j≤n

j 6=k

(xk − xj)

∏
0≤j≤n

j 6=k

(xi − xj)
= 0.

(b) Soit i ∈ {0, 1, · · · , n}.
fn(Li) = (Li(x0), Li(x1), · · · , Li(xn)) = (δi,0, δi,1, · · · , δi,i, · · · , δi,n) = (0, · · · , 0, 1, 0 · · · , 0), le

réel 1 est situé à la (i+ 1)ème place.

La famille (fn(Lo), fn(L1), · · · , fn(Ln)) représente la base canonique de l’espace vectoriel Rn+1.

(c) Soit (αO, α1, · · · , αn) ∈ Rn+1 tel que
n∑

i=0

αi.Li = 0. Donc, pour tout j ∈ {0, 1, · · · , n}, on

a
n∑

i=0

αi.Li(xj) = 0 c’est-à-dire
n∑

i=0

αi.δi,j = 0 ce qui traduit à αj = 0. D’où, (Lo, L1, · · · , Ln)

est une famille libre; et, comme le cardinal de cette famille est égal à dim(Pn) = n + 1, donc

(Lo, L1, · · · , Ln) est une base de Pn.

(d) i. D’après la question 4), l’application fn est bijective de Pn sur Rn+1. Donc, pour tout

y = (yo, y1, · · · , yn) ∈ Rn+1, il existe un unique polynôme Py ∈ Pn tel que

fn(Py) = y = (yo, y1, · · · , yn).

ii. D’après la question précédente, fn(Py) = (yo, y1, · · · , yn). Comme Py ∈ Pn et (Lo, L1, · · · , Ln)

est une base de Pn, donc il existe (βo, β1, · · · , βn) ∈ Rn+1 tel que Py =
n∑

i=0

βi.Li. Et, par suite

(yo, y1, · · · , yn) = fn(Py) =
n∑

i=0

βi.fn(Li) =
n∑

i=0

βi.εi = (βo, β1, · · · , βn). Ainsi, Py =
n∑

i=0

yiLi.

2ème partie : Approximation polynômiale au moindres carrés

A. On suppose m ≥ n+ 1.

1. D’après la question d-3) de la première partie, l’application fm est surjective de Pm vers

Rn+1. Donc, pour l’élément (yo, y1, · · · , yn) ∈ Rn+1, il existe Qo ∈ Pm tel que
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fm(Qo) = (yo, y1, · · · , yn).

2. ∗On rappelle que fm(Qo) = (Qo(xo), · · · , Qo(xn)). Pour tout P ∈ Pm, Φm(P ) =
n∑

i=0

(yi − P (xi))
2

est positif; et, comme Φm(Qo) =
n∑

i=0

(yi −Qo(xi))
2 = 0, donc la valeur minimal λm de Φm(P )

lorsque P décrit Pm est nulle.

∗ (Q ∈ Pm, Φm(Q) = 0) équivaut à (Q ∈ Pm, Q(xi) = yi = Qo(xi), pour tout i ∈ {0, 1, · · · , n})
équivaut à Q−Qo ∈ Kerfm.

L’ensemble des polynômes en lesquels cette valeur minimale est atteinte est Qo +Kerfm.

B. On suppose que m ≤ n.

1. ∗ On pose M = [mi,j] 1≤i≤p
1≤j≤q

et N = [ni,j] 1≤i≤p
1≤j≤q

. On a M + N = [mi,j + ni,j] 1≤i≤p
1≤j≤q

; donc,
t(M +N) = [mj,i + nj,i] 1≤j≤q

1≤i≤p
= [mj,i] 1≤j≤q

1≤i≤p
+ [nj,i] 1≤j≤q

1≤i≤p
= tM + tN .

∗ On pose M ′ = [m′i,j] 1≤i≤p
1≤j≤q

et N ′ = [n′i,j] 1≤i≤q
1≤j≤r

.

M ′N ′ = [ci,j] 1≤i≤p
1≤j≤r

, où ci,j =

q∑
k=1

m′i,kn
′
k,j et,

tN ′ tM ′ = [di,j] 1≤i≤r
1≤j≤p

, où di,j =

q∑
k=1

n′k,im
′
j,k =

q∑
k=1

m′j,kn
′
k,i = cj,i.

Ainsi, tN ′ tM ′ =t (M ′N ′).

2. (a) Av = t (Pv(xo), Pv(x1), · · · , Pv(xn)).

(b) Si Av = 0, où tv = (vo, · · · , vm), alors pour tout i ∈ {0, 1, · · · , n}, P (xi) = 0. Donc, le

polynôme Pv s’annulle en n+ 1 points distinctes deux à deux et, comme deg(Pv) ≤ m < n+ 1,

donc P =
m∑

k=0

vkX
k est nul; et, par suite v = 0.

- 3 -

Fin






