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L’énoncé de cette épreuve, particulière aux candidats de la filière MP,
comporte 3 pages.

L’usage de tout matériel électronique, y compris la calculatrice, est interdit

Les candidats sont informés que la qualité de la rédaction et de la présentation, la clarté et la précision
des raisonnements constitueront des éléments importants pour l’appréciation des copies. Il convient en
particulier de rappeler avec précision les références des questions abordées.

Si, au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur d’énoncé, il le signale
sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu’il est amené à prendre.

Le sujet de cette épreuve est composé d’un exercice et d’un problème indépendants entre eux.

Problème
Déterminants de Cauchy et de Gram

Application au calcul de la distance à un sous-espace vectoriel

Pour tout p ∈ N∗, on note Mp(R) l’espace vectoriel des matrices carrées d’ordre p à coefficients
réels ; la matrice identité de Mp(R) se notera Ip. Si M ∈ Mp(R), on note detM son déterminant et tM
sa transposée.

1ère Partie
Calcul du déterminant de Cauchy

On considère un entier n > 2 et deux suites finies (ak)16k6n et (bk)16k6n de réels telles que ai +bj 6= 0
pour tout couple (i, j) ∈ {1, . . . , n}2. Pour tout entier m tel que 0 < m 6 n, le déterminant de Cauchy
d’ordre m, associé aux familles (ak)16k6n et (bk)16k6n, est le nombre, noté ∆m, égal au déterminant de

la matrice
(

1
ai+bj

)
16i,j6m

.

2.1. On suppose qu’il existe (i1, i2) ∈ {1, . . . , n}2, avec i1 6= i2, tel que ai1 = ai2 . Justifier que ∆n = 0.

On suppose désormais que les réels a1, . . . , an sont deux à deux distincts et on considère la fraction
rationnelle

R =

∏n−1
j=1 (X − bj)∏n
k=1(X + ak)

.
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2.2. Justifier que les polynômes

n−1∏
k=1

(X − bk) et

n∏
k=1

(X + ak) de R[X] sont premiers entre eux.

2.3. Décomposition en éléments simples de la fraction R

2.3.1. Préciser les pôles de la fraction rationnelle R et vérifier qu’ils sont tous simples.

2.3.2. En déduire que la décomposition en éléments simples, dans R(X), de la fraction R est de la

forme R =
n∑

k=1

αk

X + ak
en précisant les expressions des réels αk en fonction des ak et des bk.

NB: Vous pouvez admettre la première partie et passer directement au reste où il ya l'EUCLIDIEN.
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2.4. Application au calcul de ∆n

2.4.1. Montrer que αn∆n =

∣∣∣∣∣∣∣∣∣
1

a1+b1
· · · 1

a1+bn−1

1
a1+bn

...
...

...
1

an−1+b1
· · · 1

an−1+bn−1

1
an−1+bn

R(b1) · · · R(bn−1) R(bn)

∣∣∣∣∣∣∣∣∣ .
2.4.2. En déduire que αn∆n = R(bn)∆n−1.

2.4.3. Calculer ∆2 puis montrer que, pour tout n > 2, ∆n =

∏
16i<j6n(aj − ai)(bj − bi)∏

16i,j6n(ai + bj)
.

2ème Partie
Matrice et déterminant de Gram

Expression de la distance euclidienne à un sous-espace vectoriel

Dans cette partie, E désigne un espace préhilbertien réel ; son produit scalaire sera noté ( . | . ) et la
norme associée se notera ‖.‖. Si F est un sous-espace vectoriel de E, de dimension finie , pF désigne la
projection orthogonale sur F .

Soit p un entier > 2. Pour tout (u1, . . . , up) ∈ Ep, on note G(u1, . . . , up) =
(
(ui|uj)

)
16i,j6p

la matrice

de Mp(R) de terme général (ui|uj). G(u1, . . . , up) s’appelle la matrice de Gram des vecteurs u1, . . . , up ;
le déterminant de cette matrice, noté |G(u1, . . . , up)|, s’appelle déterminant de Gram.

3.1. Cas p = 2

Soit (u1, u2) ∈ E2. Justifier que |G(u1, u2)| > 0 et que |G(u1, u2)| = 0 si, et seulement si, la famille
(u1, u2) est liée.

3.2. Vérifier que, pour tout (u1, . . . , up) ∈ Ep, la matrice G(u1, . . . , up) est symétrique.

3.3. Cas d’une famille liée

Soit (u1, . . . , up) ∈ Ep.
3.3.1. Soit i ∈ {1, . . . , p} et soit (λj)j 6=i une famille quelconque de p − 1 réels ; on pose wk = uk si

k ∈ {1, . . . , p} \ {i} et wi = ui +
∑
j 6=i

λjuj . Montrer que |G(w1, . . . , wp)| = |G(u1, . . . , up)|.

3.3.2. En déduire que si la famille (u1, . . . , up) est liée, alors |G(u1, . . . , up)| = 0.

3.4. Cas d’une famille libre

On considère ici une famille libre (u1, . . . , up) d’éléments de E et on note (e1, . . . , ep) une base ortho-
normée du sous-espace vectoriel Vect({u1, . . . , up}). Soit B =

(
bi,j
)
16i,j6p

∈ Mp(R) la matrice dont les

coefficients sont tels que, pour tout j ∈ {1, . . . , p}, uj =

p∑
k=1

bk,j ek.

3.4.1. Pour tout couple (i, j) d’éléments de {1, . . . , p}, exprimer le produit scalaire (ui|uj) à l’aide
des coefficients de la matrice B.

3.4.2. En déduire que G(u1, . . . , up) = tBB.

3.4.3. Montrer alors que |G(u1, . . . , up)| > 0.

3.5. Application au calcul de la distance à un sous-espace vectoriel

On considère un sous-espace vectoriel F de E, de dimension finie n > 2, et on note (v1, . . . , vn) une
base quelconque de F .

Épreuve de Mathématiques II 2 /3 −→

ELAMIRI
Texte surligné 



Concours National Commun – Session 2019 – MP

3.5.1. Montrer que, pour tout x ∈ E,

|G(v1, . . . , vn, x)| = |G
(
v1, . . . , vn, pF (x)

)
|+ ‖x− pF (x)‖2|G(v1, . . . , vn)|.

3.5.2. En déduire que, pour tout x ∈ E, la distance du vecteur x au sous-espace vectoriel F , notée
d(x, F ), est donnée par :

d(x, F ) =

√
|G(v1, . . . , vn, x)|
|G(v1, . . . , vn)|

.

3.6. Un exemple de matrice de Gram

Soit n un entier naturel ≥ 2 ; on note (e1, . . . , en) la base canonique de Rn et < , > son produit scalaire
canonique. On note An la matrice de Mn(R) de terme général ai,j = min(i, j) pour (i, j) ∈ {1, . . . , n}2,
et on considère les vecteurs v1, . . . , vn de Rn définis par :

∀ k ∈ {1, . . . , n}, vk =
k∑

i=1

ei.

3.6.1. Montrer que (v1, . . . , vn) est une famille libre de Rn.

3.6.2. Calculer le produit scalaire <vi, vj>, pour tout (i, j) ∈ {1, . . . , n}2 ; en déduire que An est une
matrice de Gram.

3.6.3. Montrer que la matrice An est orthogonalement diagonalisable et que ses valeurs propres sont
strictement positives.

3ème Partie
Application au calcul d’un minimum

On note R[X] l’espace vectoriel réel des polynômes à coefficients dans R. Pour tout k ∈ N, l’élément
Xk de la base canonique de R[X] se notera Pk ; en particulier, P0 = 1.

On considère l’application ( . | . ) définie sur R[X]2 par : (P |Q) =

∫ 1

0
P (t)Q(t) dt, (P,Q) ∈ R[X]2.

4.1. Montrer que ( . | . ) est un produit scalaire sur l’espace vectoriel réel R[X].

4.2. Calcul d’une distance

Soit p un entier > 2 et soit (nk)1≤k≤p une suite finie d’entiers naturels deux à deux distincts.

4.2.1. Pour tout (i, j) ∈ {1, . . . , p}2, exprimer le produit scalaire (Pni |Pnj ) en fonction de ni et nj .

4.2.2. En utilisant les résultats de la première partie, exprimer le déterminant de la matrice de Gram
G(Pn1 , . . . , Pnp) en fonction des entiers n1, . . . , np .

4.2.3. Montrer que
(
Pn1 , . . . , Pnp

)
est une famille libre de R[X].

4.2.4. On note Wp le sous-espace vectoriel de R[X] engendré par la famille
(
Pn1 , . . . , Pnp

)
.

Montrer que, pour tout entier naturel r, d(Pr,Wp) =
1√

2r + 1

p∏
k=1

|nk − r|
nk + r + 1

.

4.3. Application au calcul d’un minimum

Soit n un entier > 2 et soit ψ : Rn −→ R l’application définie par :

∀ (a1, . . . , an) ∈ Rn, ψ(a1, . . . , an) =

∫ 1

0

(
1− a1t− · · · − antn

)2
dt.

4.3.1. À l’aide d’une interprétation euclidienne, montrer qu’il existe un unique point (a1, . . . , an) de
Rn en lequel l’application ψ atteint son minimum, autrement dit :

ψ(a1, . . . , an) = inf
(x1,...,xn)∈Rn

ψ(x1, . . . , xn)

4.3.2. Calculer ψ(a1, . . . , an) en fonction de n

Épreuve de Mathématiques II 3 /3 Fin

Fin extrait


