Structures algébriques usuelles

Schéma du chapitre

- I) Structure de groupe
 - 1) Groupes
 - 2) Produit fini de groupes
 - 3) L'ensemble $\mathbb{Z}/n\mathbb{Z}$
 - 4) Sous-groupes
 - 5) Sous-groupe engendré par une partie
 - 6) Morphisme de groupes
 - 7) Groupes monogènes. Groupes cycliques
 - 8) Ordre d'un élément
- II) Structure d'anneau
 - 1) Rappels et compléments de SUP
 - 2) produit fini d'anneaux
 - 3) Sous-anneaux
 - 4) Morphisme d'anneaux
 - 5) Noyau et image d'un morphisme d'anneaux
 - 6) Sous-corps
 - 7) L'anneau $\mathbb{Z}/n\mathbb{Z}$
 - 8) Idéal d'un anneau commutatif
 - 9) Divisibilité dans un anneau commutatif intègre
 - 10) Théorème chinois
 - 11) Indicatrice d'Euler
 - 12) Théorème d'Euler
- III) Anneaux de polynômes à une indéterminée

\mathbb{K} est un sous-corps de \mathbb{C}

- 1) Préambule
- 2) Idéaux de l'anneau $\mathbb{K}[X]$
- 3) PGCD de deux polynômes
- 4) Irréductibles de $\mathbb{K}[X]$
- IV) Structure d'algèbre

$\mathbb K$ est un sous-corps de $\mathbb C$

- 1) Algèbre
- 2) Sous-algèbre
- 3) Morphisme d'algèbre

Structures algébriques usuelles

I) Structure de groupe

1) Groupes

La déf d'un groupe est vue au SUP.

Exemples de groupes :

- $-\mathbb{R}$, \mathbb{Z} , \mathbb{C} gr additifs neutre 0.
- $-\mathbb{C}^*$, \mathbb{R}^* , $]0,+\infty[$ gr multiplicatifs de neutre 1.
- $-\mathbb{U},\,\mathbb{U}_n$
- $-(S_E, \circ)$ et (S_n, \circ)
- $-(GL(E), \circ)$ et $(GL_n(\mathbb{K}), \times)$, où E est K-espace vectoriel.

2) Produit fini de groupes

Soient $(G_1, *_1), \ldots, (G_n, *_n)$ des groupes.

– loi produit définie sur le prduit cartésien $G_1 \times \cdots \times G_n$:

$$(x_1,\ldots,x_n)*(y_1,\ldots,y_n)=(x_1*_1y_1,\ldots,x_n*_ny_n)$$

Prop:

Si $(G_1, *_1), \ldots, (G_n, *_n)$ des groupes d'éléments neutres respectifs e_1, \ldots, e_n , alors $G_1 \times \cdots \times G_n$ est un groupe de neutre le n-uplet (e_1, \ldots, e_n) .

Il est à noter que:

- si $(G_1, *_1), \ldots, (G_n, *_n)$ sont abéliens alors $G_1 \times \cdots \times G_n$ l'est aussi

- L'inverse de
$$(x_1, \ldots, x_n)$$
 est $(x_1, \ldots, x_n)^{-1} = (x_1^{-1}, \ldots, x_n^{-1})$

Exemples:

 $-\left(\mathbb{C},+\right)$ est un groupe, alors $\left(\mathbb{C}^{n},+\right)$ est un groupe de neutre $(0,\ldots,0)$ pour la loi :

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

 $-(\mathbb{C},+)$ et (\mathbb{C}^*,\times) sont des groupes. Alors $\mathbb{C}\times\mathbb{C}^*$ est un groupe pour la loi \star :

$$(a,b)\star(c,d)=(a+c,bd)$$

3) L'ensemble $\mathbb{Z}/n\mathbb{Z}$

Prop:

La congruence \equiv est une relation d'équivalence sur \mathbb{Z} .

NB

— \overline{a} , la classe d'équivalence de a, est donnée par :

$$\overline{a} = \{a + kn/k \in \mathbb{Z}\}\$$

- $-\overline{a} = \overline{b} \Leftrightarrow a \equiv b[n]$
- $\overline{a} = \overline{0} \Leftrightarrow n/a$, par exemple :

$$\forall k \in \mathbb{Z}, \overline{kn} = \overline{0} ; \\ \overline{n} = \overline{0}$$

Notation:

L'ensemble quotient de \mathbb{Z} est noté $\mathbb{Z}/n\mathbb{Z}$.

$$\mathbb{Z}/n\mathbb{Z} = \{ \overline{a}/a \in \mathbb{Z} \}$$

Prop:

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \dots, \overline{n-1}\}$$

Par exemple:

$$\mathbb{Z}/2\mathbb{Z} = \dots$$
 et $\mathbb{Z}/4\mathbb{Z} = \dots$

Prop:

$$\begin{cases} a \equiv b \ [n] \\ c \equiv d \ [n] \end{cases} \Rightarrow \begin{cases} a+c \equiv b+d \ [n] \\ ac \equiv bd \ [n] \end{cases}$$

Conséquences :

Consequences:
i)
$$\begin{cases} \overline{a} = \overline{b} \\ \overline{c} = \overline{d} \end{cases} \Rightarrow \begin{cases} \overline{a+c} = \overline{b+d} \\ \overline{ac} = \overline{bd} \end{cases}$$

ii) Deux lci se définissent sur $\mathbb{Z}/n\mathbb{Z}$; la somme et le produit :

$$\overline{a+b} = \overline{a} + \overline{b} \ et \ \overline{a \times b} = \overline{a} \times \overline{b}$$

Exemples:

On est dans $\mathbb{Z}/5\mathbb{Z}$. Complétons les deux tableaux suivants :

	+	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$	
	$\overline{0}$						
	$\overline{1}$						١.
	$\overline{2}$] '
	3						
	$\overline{4}$						

	$\frac{\times}{\overline{0}}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$
	$\overline{0}$					
et	$\overline{1}$					
5 1	$\frac{\overline{2}}{\overline{3}}$					
	$\overline{3}$					
	$\overline{4}$					

Prop:

 $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe abelien de neutre $\overline{0}$, et de cardinal n.

4) Sous-groupes

La déf et la caractérisation d'un sous-groupe sont vues au SUP.

{e} et G sont des sous groupes triviaux de G.

Exemples:

- $-\mathbb{U}$, \mathbb{U}_n et $]0,+\infty[$ sont des sgr de (\mathbb{C}^*,\times)
- $-\mathrm{O}(n)$, l'ensemble des matrices orthogonale, est un ssgr de $(GL_n(\mathbb{R}), \times)$.
- SO(n), l'ensemble des matrices orthogonales positives, est un ssgr de O(n).
- O(E), l'ensemble des isométries de E (càd endomorphismes orthogonaux de E), est un ssgr de $(GL(E), \circ)$; où E est un espace euclidien.
- SO(E), l'ensemble des isométries directes, est un ssgr de O(E)

Prop:

Un ssgr est aussi un groupe.

Prop:

Les ssgr de $(\mathbb{Z},+)$ sont exactement les $n\mathbb{Z}$ avec $n \in \mathbb{N}$; où $n\mathbb{Z} =$ $\{nk/k \in \mathbb{Z}\}$

Prop:

L'intersection d'une famille de ssgr est un ssgr :

Si tous les F_i sont des ssgr de G, alors $\bigcap H_i$ l'est auusi.

NB:

la réunion de 2 ssgr n'est en général pas un ssgr. Toutefois, on a :

$$H \cup K$$
 est un ssgr \Leftrightarrow $(H \subset K$ ou $K \subset H)$

Démo: En exercice.

NB:

C'est le même résultat et la même démonstration pour les sousespaces vectoriels; la réunion de deus sev n'est en général pas un sev. On a toutefois:

> Soient H et K deux sev d'un K-esp vectoriel E. $H \cup K$ est un sev de $E \Leftrightarrow (H \subset K \text{ ou } K \subset H)$

5) Sous-groupe engendré par une partie

(G,.)sera un groupe.

Déf:

Soit A une partie de G.

Le sous-groupe de G engendré par A es l'intersection de tous les sous-groupes de G contenant A.

On le note $\langle A \rangle$.

NB:

$$<$$
A $>=$ \bigcap H

 <A>= $\bigcap_{H \in I} H$ où $I = \{H \ ssgr \ de \ G/A \subset H\}$; l'ensemble des sous-groupes contenant A.

NB:

- i) <A> est un sous-groupe de G (comme intersection de ssgroupes)
- ii) $\langle A \rangle$ contient A.
- iii) Si K est un ssgroupe de G contenant A alors <A> \subset K
- iv) i), ii) et iii) se résument dans la proposition suivante :

Prop:

<A> est le plus petit sous-groupe de G contenant A.

Vocab:

Si G=<A>, A est dite partie génératrice de G. On dit aussi que G est engendré par A.

- Ainsi A est une partie génératrice du groupe <A>

Prop:

Soit A une partie d'un groupe (G,.).

Si tout élément de G s'écrit comme produit d'éléments de A alors A est une partie génératice de G; càd que G est engendré par A. Par exemple :

- a) S_n est engendré par les cycles.
- b) S_n est engendré par les transpositions.

Rappel:

Toute permutation de S_n s'écrit comme produit de cycles (resp. transpositions).

Prop:

Soit $a \in G$.

$$\langle \{a\} \rangle = \{a^k/k \in \mathbb{Z}\}$$

Notation et vocabulaire :

Soit $a \in G$.

 $\{a^k/k \in \mathbb{Z}\}$ se note aussi <a> et s'appelle le sous-groupe engendré par a.

NB:

Si (G,+) est additif, on a

$$\langle a \rangle = \{ka/k \in \mathbb{Z}\}$$

Par exemple dans le groupe $(\mathbb{Z}, +)$,on a <n $>=\{kn/k \in \mathbb{Z}\}$ qui se note $n\mathbb{Z}$.

NB:

Soient a et b deux éléments de G.

Si ab = ba ou si G est commutatif, on a:

$$< \{a, b\} > = \{a^p b^q / p, q \in \mathbb{Z}\}\$$

6) Morphisme de groupes

Déf:

On appelle morphisme du groupe (G_1, T_1) vers le groupe (G_2, T_2) toute application f définie de G_1 vers G_2 vérifiant

$$\forall x, y \in G, f(xT_1y) = f(x)T_2f(y)$$

Vocabulaire:

- i) Si f est un morphisme de G vers lui-même, on dit que f est un endomorphisme de G.
- ii) Un morphisme bijectif est dit isomorphisme.
- iii) Un endomorphisme bijectif de G est dit automorphisme de G.
- iv) Deux groupes sont dits isomorphes s'il existe un isomorphisme entre eux.

Exemples:

- a) Soit $n \geq 2$.
 - L'application $z \mapsto z^n$ est un endomorphisme de (\mathbb{C}^*, \times) .
- b) L'application $z\mapsto |z|$ est un endomorphisme de (\mathbb{C}^*,\times) .
- c) L'application $exp: z \mapsto e^z$ est un morphisme de $(\mathbb{C}, +)$ vers (\mathbb{C}^*, \times)
- d) L'application $ln: x \mapsto lnx$ est un morphisme de $(\mathbb{R}^{+*}, \times)$ vers $(\mathbb{R}, +)$
 - Il est clair alors que $(\mathbb{R}^{+*}, \times)$ et $(\mathbb{R}, +)$ sont isomorphes.
- e) i) L'application $det: A \mapsto det(A)$ est un morphisme de $(GL_n(\mathbb{K}), \times)$ vers (\mathbb{K}^*, \times)
 - ii) L'application $det: A \mapsto det(A)$ est un morphisme de $(O(n), \times)$ vers (\mathbb{R}^*, \times)
 - iii) L'application $det: f \mapsto det(f)$ est un morphisme de $(O(E), \circ)$ vers (\mathbb{R}^*, \times) , où E est un espace euclidien.
- f) Soit $a \in G$ fixé, où (G,.) est un groupe. L'application $m \mapsto a^m$ est un morphisme du groupe (\mathbb{Z} , +) vers le groupe (G,.)
- g) La signature est un morphisme du groupe (S_n, \circ) vers le groupe $\{-1, 1\}$

Prop:

- 1) La composée de deux morphismes (resp. endomorphismes)(resp. isomorphismes) est un morphisme (resp. endomorphisme)(resp. isomorphisme)
- 2) La réciproque d'un isomorphisme est un isomorphisme.

NB:

 $(Aut(G), \circ)$ est un groupe; où Aut(G) est l'ensemble des automorphismes de G.

Exercice:

Soit (G,.) un groupe.

a) Pour a \in G, notons τ_a l'application définie de G vers lui-même par

$$\tau: x \mapsto axa^{-1}$$

Montrer que τ_a est un automorphisme de G.

b) Montrer que l'application $\Phi: a \mapsto \tau_a$ est un morphisme du groupe G vers le groupe (Aut(G), \circ)

Prop

Soit f un morphisme du groupe G vers G'. Soient e et e' les éléments neutres respectifs. On a :

- 1) f(e) = e'
- 2) $\forall x \in G, \ f(x^{-1}) = f(x)^{-1}$
- 3) $\forall x \in G, \ \forall m \in \mathbb{Z}, \ f(x^m) = f(x)^m$

Prop:

L'image directe (resp.réciproque) d'un sous-groupe par un morphisme de groupes est un sous-groupe.

Définition et proposition : (Noyau et image d'un morphisme) Soit f un morphisme du groupe G vers G'. Soit e' l'élément neutre de G'.

1) Le noyau de f est

$$ker(f) = f^{-1}(\{e'\}) = \{x \in G/f(x) = e'\}$$

2) L'image de f est

$$Im(f) = f(G) = \{f(x)/x \in G\}$$

3) Ker(f) et Im(f) sont des sous-groupes resp de G et G'.

NB:

Résultats analogues à ceux pour une application linéaire; où les images directes et réciproques de sev sont des sev, puis on déduit que le noyau et l'image sont des sev.

Exercice:

Considérons le morphisme de $(\mathbb{C}, +)$ vers (\mathbb{C}^*, \times) défini par $exp: z \mapsto e^z$. Montrer que

$$Im(exp) = \mathbb{C}^* \ et \ ker(exp) = 2\pi i \mathbb{Z}$$

Prop:

Soit f un morphisme du groupe G vers G'. Soit e le neutre de G.

- 1) f est injectif $\Leftrightarrow ker(f) = \{e\}$
- 2) f est surjectif $\Leftrightarrow Im(f) = G'$
- 7) Groupes monogènes. Groupes cycliques

Déf:

i) Un groupe G est dit monogène s'il existe un élément $a \in G$ tel que $G = \langle a \rangle$.

a est dit dans ce cas un générateur de G.

ii) Un groupe monogène fini est dit groupe cyclique.

Exemples:

- i) (\mathbb{U}_n, \times) est cyclique et $e^{\frac{2\pi i}{n}}$ en est un générateur.
- ii) $(\mathbb{Z}, +)$ est monogène et 1 en est un générateur.
- iii) $(\mathbb{Z}/n\mathbb{Z}, +)$ est cyclique et $\overline{1}$ en est un générateur.

NB:

Tout groupe monogène est commutatif.

La réciproque est en général fausse :

Contre-exemple:

 $(\mathbb{C},+)$ est commutatif mais non monogène (Démo par l'absurde)

Conséquence:

Pour $n \geq 3$, (S_n, \circ) n'est pas cyclique.

Clé à retenir:

Soit H un sous-groupe de G. Soit $a \in G$. On a

$$< a > \subset H \Leftrightarrow a \in H$$

Prop:

 \overline{m} est générateur de $\mathbb{Z}/n\mathbb{Z} \Leftrightarrow m \wedge n = 1$

Démo:

$$\mathbb{Z}/n\mathbb{Z} = <\overline{m}> \Leftrightarrow \mathbb{Z}/n\mathbb{Z} \subset <\overline{m}> \\ \Leftrightarrow <\overline{1}>\subset <\overline{m}> \\ \Leftrightarrow \overline{1}\in <\overline{m}> \\ \Leftrightarrow \exists k\in\mathbb{Z}\ tel\ que\ \overline{1}=\overline{km} \\ \Leftrightarrow \exists k,l\in\mathbb{Z}\ tels\ que\ nl+km=1 \\ \Leftrightarrow m\wedge n=1\ (Bezout)$$

Prop:

- 1) Tout groupe monogène infini est isomorphe à $(\mathbb{Z},+)$
- 2) Tout groupe cyclique de cardinal n est isomorphe à $(\mathbb{Z}/n\mathbb{Z}, +)$

Démo:

Posons G=<a> et e son élément neutre. Considérons l'application suivante :

$$f: (\mathbb{Z}, +) \rightarrow G$$

 $m \mapsto a^m$

f est bien un morphisme de groupes surjectif.

- i) Si f est injective. Alors f est un isomorphisme de groupes, et donc G est isomorphe à $(\mathbb{Z},+)$.
- ii) Si f n'est pas injective. Alors $ker(f) = n\mathbb{Z}$ où $n \in \mathbb{N}^*$. Signalons alors qu'on a :

$$a^k = e \Leftrightarrow n/k$$

Montrons que G est isomorphe à $(\mathbb{Z}/n\mathbb{Z}, +)$. Considérons l'application naturelle suivante :

 Φ est un isomorphisme, en effet :

a) Φ est une application injective, en effet :

$$\overline{k} = \overline{l} \Leftrightarrow n/(k-l)$$

$$\Leftrightarrow a^{k-l} = e$$

$$\Leftrightarrow a^k = a^l$$

$$\Leftrightarrow \Phi(k) = \phi(l)$$

- b) Φ est surjective par construction.
- c) Φ est clairement un morphisme de groupes **Conclusion**: Φ est un isomorphisme.

8) Ordre d'un élément

Déf:

Soit (G, ...) un groupe de neutre e. Soit $a \in G$.

- 1) a est dit d'ordre fini si et seulement s'il existe $n \in \mathbb{N}^*$ tel que $a^n = e$
- 2) Dans ce cas, *l'ordre de a* est le plus petit entier $n \in \mathbb{N}^*$ vérifiant $a^n = e$.

Cas d'un groupe additif (G,+):

- 1) a est dit d'ordre fini si et seulement s'il existe $n \in \mathbb{N}^*$ tel que na = 0
- 2) Dans ce cas, l'ordre de a est le plus petit entier n vérifiant na = 0.

Exemples:

- 1) Dans $(\mathbb{Z}/6\mathbb{Z}, +)$, on a $o(\overline{1}) = 6$, $o(\overline{2}) = 3$, $o(\overline{3}) = 2$.
- 2) Dans $(\mathbb{Z}, +)$, tou élément $p \in \mathbb{Z}^*$ n'est d'ordre fini.
- 3) Dans un groupe (G,.) quelconque de neutre e, on a :
 - i) o(e) = 1
 - ii) On a même l'équivalence

$$o(x) = 1 \Leftrightarrow x = e$$

- 4) Dans (\mathbb{C}^*, \times) , on a:
 - i) o(i)=4
 - ii) $o\left(e^{\frac{2\pi i}{n}}\right) = n$
 - iii) 2015 n'est pas d'ordre fini.
- 5) Dans (G,.) quelconque de neutre e. Si on a o(a)=n alors On a :
 - i) $a^n = e$
 - ii) $\forall k \in \mathbb{Z}, \ a^{nk} = e$

En général, on a :

Prop:

Supposons o(a)=n, on a:

1)
$$a^k = e \Leftrightarrow n/k$$

2)
$$a^k = a^l \Leftrightarrow n/(k-l) \Leftrightarrow k \equiv l[n]$$

Démo :

1) $a^k = e \Leftrightarrow n/k$, en effet :

(**⇐**) OK

 (\Rightarrow) Supposons $a^k = e$.

La division euclidienne de k par n implique l'existence de $(q, r) \in \mathbb{Z}^2$ tel que

$$k = nq + r$$
 et $0 \le r < n$

On a:

$$k = nq + r$$
 $\Rightarrow a^r = e$
 $\Rightarrow r = 0 \text{ par definition de } r$
 $\Rightarrow k = nq$

2) Vient de 1)

Prop

Si o(a)=n alors <a>, le sous-groupe engendré par a, est de cardinal n

On a précisemment : $< a > = \{e, a, a^2, ..., a^{n-1}\}$

Prop

Supposons que G est un groupe fini et card(G)=n. Alors on a :

- 1) $\forall a \in G, \ a^n = e$
- 2) Tout élément a de G est d'ordre fini, et on a o(a)/n

Démo :

Le programme se limite à la démonstration dans le cas commutatif.

1) Soit $a \in G$.

On a
$$\prod_{x\in G}x=\prod_{x\in G}ax$$
 car $\{ax/x\in G\}=G$. D'où $\prod_{x\in G}x=a^n\prod_{x\in G}x$ Et donc $a^n=e$

2) Vient de 1)

II) Structure d'anneau

1) Rappels et compléments de SUP

Les notions suivantes sont déjà vues au SUP, revoyez-les :

Anneau-Anneau intègre-Corps-Élément inversible dans un anneau-Calcul dans un anneau

Rappelons ici quelques points importants:

Exemples d'anneaux:

 \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{K}[X]$, $\mathbb{K}(X)$, $M_n(\mathbb{K})$, $(L(E), +, \circ)$, $F(X, \mathbb{K})$ en particulier $\mathbb{K}^{\mathbb{N}}$

Calcul dans un anneau:

 $(A,+,\times)$ un anneau et $a,b\in A$ tels que $\mathbf{ab}\mathbf{=ba}$. On a :

i.
$$(ab)^n = a^n b^n$$

ii.
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
: Binôme de Newton

iii.
$$a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^k b^{n-1-k}$$
: Egalité de Bernoulli

Prop :

 $(U(A),\times),$ l'ensemble des éléments inversibles de A, est un groupe. ${\bf NB}$:

U(A) se note aussi A^{\times} .

U(A) s'appelle le groupe des unités de A.

Exemples d'éléments inversibles :

- i. L'anneau $(M_n(\mathbb{K}), +, \times)$: $U((M_n(\mathbb{K})) = GL_n(\mathbb{K})$ et $(GL_n(\mathbb{K}), \times)$ est le groupe de ses éléments inversibles. C'est en fait le groupe linéaire d'ordre n
- ii. L'anneau $(\mathbb{K}, +, \times)$: $U(\mathbb{K}) = \mathbb{K}^*$ et (\mathbb{K}^*, \times) est le groupe de ses éléments inversibles.
- iii. L'anneau $(\mathbb{Z}, +, \times)$: $U(\mathbb{Z}) = \{-1, 1\}$ et $(\{-1, 1\}, \times)$ est le groupe de ses éléments inversibles.

Prop:

Dans un anneau intègre, on a

$$ab = 0 \Leftrightarrow (a = 0 \text{ ou } b = 0)$$

Exemples d'anneaux intègres :

 \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{K}[X]$, $\mathbb{K}(X)$

Exemples d'anneaux non intègres :

- 1) $M_2(\mathbb{R})$, car $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ et les deux matrices sont non nulles.
- 2) $\mathbb{Z}/8\mathbb{Z}$, car $\overline{2} \times \overline{4} = \overline{0}$ et les deux éléments sont non nuls.
- 3) $(\mathbb{R}^{\mathbb{R}}, +, \times)$. Donner deux fonctions convenables. (En exo chez-vous)

Déf:

a est nilpotentsi et s
s'il existe $n\in\mathbb{N}^*$ tel que $a^n=0$

L'indice de nilpotence de a est le plus petit entier p tel que $a^p=0$

Exemples:

- Dans $\mathbb{Z}/8\mathbb{Z}$, $\overline{2}^3 = \overline{0}$ et $\overline{2}$ est nilpotent d'indice 3.
- Dans $M_2(\mathbb{R})$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = 0$; ainsi $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ est nilpotent d'ndice 2.

Exercice:

Soit a un élément nilpotent d'indice $n \in \mathbb{N}^*$. Montrer que (1-a) est inversible et préciser $(1-a)^{-1}$ en fonction des puissances de a.

Exemples de corps:

 \mathbb{Q} , \mathbb{R} , \mathbb{R} , \mathbb{R} , \mathbb{R} (X), le corps des fractions rationnelles à coefficients dans \mathbb{R}

NB:

- i. Tout corps est intègre.
- ii. Un anneau est par définition unitaire
- iii. Un corps est par définition commutatif

2) Produit fini d'anneaux

Soient $(A_1, +, \times), \ldots, (A_n, +, \times)$ des anneaux.

Considérons les deux lois + $et \times$ définies naturellement sur le produit cartésien $A_1 \times \cdots \times A_n$ par

$$\begin{cases} (a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n) \\ (a_1, \dots, a_n) \times (b_1, \dots, b_n) = (a_1 \times b_1, \dots, a_n \times b_n) \end{cases}$$

Prop:

1) $(A_1 \times \cdots \times A_n, +, \times)$ est un anneau et que

$$0_{A_1 \times \dots \times A_n} = (0_{A_1}, \dots, 0_{A_n}) \text{ et } 1_{A_1 \times \dots \times A_n} = (1_{A_1}, \dots, 1_{A_n})$$

- 2) (a_1, \ldots, a_n) est inversible $\Leftrightarrow a_1, \ldots, a_n$ le sont. Dans ce cas $(a_1, \ldots, a_n)^{-1} = (a_1^{-1}, \ldots, a_n^{-1})$
- 3) $U(A_1 \times \cdots \times A_n) = U(A_1) \times \cdots \times U(A_n)$
- 4) En particulier, si $(A, +, \times)$ est un anneau, alors $(A^n, +, \times)$ l'est aussi et on

$$U(A^n) = (U(A))^n$$

Par exemple:

- 1) Considérons l'anneau $(\mathbb{C}^2, +, \times)$, on a $U(\mathbb{C}^2) = (\mathbb{C}^*)^2$
- 2) Dans l'anneau $(\mathbb{Z}^2, +, \times)$ on a $U(\mathbb{Z}^2) = \{-1, 1\}^2 = \{(1, 1), (-1, -1), (-1, 1), (1, -1)\}$

3) Sous-anneaux

Déf:

Soit $(A,+,\times)$ un anneau. Soit B une partie de A.

B est dite sous-anneau de A si et ssi

$$\begin{cases} a) \ 1 \in B \\ b) \ \forall x, y \in B, x - y \in B \\ c) \ \forall x, y \in B, x \times y \in B \end{cases}$$

NB:

— Il faut vérifier que 1 qui est dans B, non pas 0;

—un sous-anneau contient par définition 1.

Prop:

Un sous-anneau est à son tour un anneau.

Exercice d'application:

Les ensembles suivants sont-ils des anneaux?

- 1) L'ensemble des suites réelles convergentes.
- 2) L'ensemble des suites réelles convergentes vers zéro.
- 3) $2\mathbb{Z}$
- 4) $\mathbb{Z}[i] = \{a + bi/a, b \in \mathbb{Z}\}$. Il s'appelle ¹
- 4) Morphisme d'anneaux

Déf:

Soit f une application définie d'un anneau A vers un anneau B. f est dite $morphisme\ d'anneaux$ si et ssi

- 1) f(1)=1
- 2) $\forall x, y \in A, \ f(x+y) = f(x) + f(y)$
- 3) $\forall x, y \in A, \ f(x \times y) = f(x) \times f(y)$

Vocabulaire:

- 1) Un morphisme d'anneaux bijectif est dit isomorphisme d'anneaux.
- 2) Deux anneaux sont dits *isomorphes* s'il existe un morphisme d'anneaux entre eux.

Prop:

- 1) La composée de deux morphismes d'anneaux est un morphisme d'anneaux.
- 2) La composée de deux isomorphismes d'anneaux est un isomorphisme d'anneaux.
- 3) La réciproque d'un isomorphisme d'anneaux est un isomorphisme d'anneaux.

Prop:

Soit f un morphisme d'anneaux de A vers B. On a :

- 1) f(0)=0
- 2) $\forall x \in A, \forall n \in \mathbb{N}, f(x^n) = (f(x))^n$
- 3) $\forall x \in A, \forall m \in \mathbb{Z}, f(mx) = mf(x)$
- 4) Si $x \in A$ est inversible alors son image f(x) l'est aussi, et on a $(f(x))^{-1} = f(x^{-1})$
- 5) Noyau et image d'un morphisme d'anneaux

Déf: (noyau et image)²

Soit f un morphisme d'anneaux de A vers B.

^{1.} anneau de Gauss

^{2.} Mêmes définitions que pour un morphisme de groupes ou application linéaire.

1) Le noyau de f:

$$ker(f) = \{x \in A / f(x) = 0\} = f^{-1}\{0\}$$

2) L'image de f:

$$Im(f) = \{f(x)/x \in A\} = f(A)$$

Prop:

Soit f un morphisme d'anneaux de A vers B. On a :

- 1) Im(f) est un sous-anneau de B
- 2) f est injective $\Leftrightarrow ker(f) = \{0\}$
- 3) f est surjective $\Leftrightarrow Im(f) = B$

NB:

ker(f) n'est en général pas un sous-anneau de A. En fait, il sera un **idéal**; voir plus tard.

6) Sous-corps

Déf:

Soit $(K,+,\times)$ un corps. Soit B une partie de K. B est dite sous-corps de K si et ssi

$$\begin{cases} a) \ 1 \in B \\ b) \ \forall x, y \in B, x - y \in B \\ c) \ \forall x, y \in B, x \times y \in B \\ d) \ \forall x \in B | \{0\}, x^{-1} \in B \end{cases}$$

Prop: Un sous-corps est à son tour un corps.

Exemples: \mathbb{Q} est un sous-corps de \mathbb{R}

7) L'anneau $\mathbb{Z}/n\mathbb{Z}$

Prop: Soit $n \geq 2$.

- 1) $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau commutatif de neutres $\overline{0}$ et $\overline{1}$
- 2) \overline{m} est inversible dans $\mathbb{Z}/n\mathbb{Z} \iff m \land n = 1$
- 3) $(\mathbb{Z}/p\mathbb{Z}, +, \times)$ est un corps $\Leftrightarrow p$ est un nombre premier

Démo:

- 1) OK
- 2) On a:

 \overline{m} est inversible dans $\mathbb{Z}/n\mathbb{Z}$ $\Leftrightarrow \exists u \in \mathbb{Z} \text{ tell que } \overline{m} \times \overline{u} = \overline{1}$ $\Leftrightarrow \exists u, v \in \mathbb{Z} \text{ tell que } mu + nv = 1$ $\Leftrightarrow m \wedge n = 1 \text{ (Bezout)}$

3) (\Rightarrow) Supposons que ($\mathbb{Z}/p\mathbb{Z}, +, \times$) est un corps. Vérifions que p est

premier.

Raisonnons par l'absurde et supposons que p n'est pas premier.

Alors il existe $n, k \in \mathbb{N}$ tels que p = nk $et2 \le n, k \le p-1$

D'où
$$\overline{n} \times \overline{k} = \overline{0} \, (dans \mathbb{Z}/p\mathbb{Z})$$

Or \overline{k} et \overline{n} sont inversibles dans le corps $\mathbb{Z}/p\mathbb{Z}$) car non nuls.

Alors leur produit, qui est $\overline{0}$ est aussi inversible. Ce qui est absurde.

(⇔)

Soit $\overline{m} \neq \overline{0}$. Montrons que \overline{m} est inversible dans l'anneau $\mathbb{Z}/p\mathbb{Z}$. On a

$$\begin{array}{ll} \overline{m} \neq \overline{0} & \Leftrightarrow \ p \not \mid m \\ & \Leftrightarrow p \wedge m = 1 \\ & \Leftrightarrow \overline{m} \ est \ inversible \end{array}$$

Exercice : (Résolution de l'équation $\overline{a} \times \overline{x} = \overline{b}$)

Résoudre dans \mathbb{Z} les équations suivantes :

- 1) $6x + 5 \equiv 0$ [13]
- 2) $6x \equiv 2 [8]$
- 3) $6x \equiv 3 [8]$

8) Idéal d'un anneau commutatif

 $(A, +, \times)$ sera dans ce paragraphe un anneau commutatif de neutre 1.

Déf : Soit $I \subset A$.

I est un $id\acute{e}al$ de A si et s
si les trois conditions suivantes sont satisfaites :

- 1) $0 \in I$
- 2) $\forall x, y \in I, \ x + y \in I$
- 3) $\forall x \in I, \ \forall y \in A, \ x \times y \in I$

NB:

- a) $\forall x \in I, -x \in I \ (vient \ de \ 3))$
- b) I est un sous-groupe de (A, +)
- c) $\{0\}$ et A sont des idéaux de A

Prop:

- 1) Les idéaux de $(\mathbb{Z}, +, \times)$ sont les $n\mathbb{Z}$.
- 2) Soit I un idéal de A. On a

$$I = A \Leftrightarrow 1 \in I$$

- 3) Le noyau d'un morphisme d'anneaux est un idéal.
- 4) L'intersection de deux idéaux est un idéal.

5) La somme de deux idéaux est un idéal ; avec la notation naturelle suivante

$$I + J = \{x + y/x \in I \text{ et } y \in J\}$$

N.B : Soient I et J deux idéaux de A.

- 1) $I \cap J$ est le plus grand idéal de A contenu dans I et J.
- 2) I + J est le plus petit idéal de A contenant I et J.

Prop et déf : Soit $a \in A$.

- 1) $aA = \{ax/x \in A\}$ est un idéal de A.
- 2) aA s'appelle l'idéal engendré par a.
- 3) aA est le plus petit idéal de A contenant a.
- 9) Divisibilité dans un anneau commutatif intègre

 $(A, +, \times)$ sera dans ce paragraphe un anneau commutatif intègre.

Déf: Soient $a, b \in A$

- 1) a divise b si et ss'il existe $c \in A$ tel que b = ca.
- 2) On note a|b

Propriétés immédiates : Soient $a, b, c \in A$.

- 1) 1|a, a|a, a|0
- 2) $a|b \Leftrightarrow b \in aA \Leftrightarrow bA \subset aA$
- 3) $(a|b|et|a|c) \Rightarrow a|(b+c)$
- 4) $(a|b|et|b|c) \Rightarrow a|c|$

Déf: a et b sont dits *associés* si et ssi a/b et b/a **Prop**: Les assertions suivantes sont équivalentes

- 1) a et b sont associés
- aA = bA
- 3) $\exists u \in U(A) / a = bu$
- 4) $\exists v \in U(A) / b = av$

NB:

- 1) L'association est une relation d'équivalence sur A.
- 2) Soient $a, b \in \mathbb{Z}$. On a

 $a \ et \ b \ sont \ associ\'es \Leftrightarrow |a| = |b| \Leftrightarrow a = \pm b$

3) Soient $P, Q \in \mathbb{K}[X]$. On a

 $P\ et\ Q\ sont\ associ\acute{e}s \Leftrightarrow\ \exists \lambda \in \mathbb{K}^*\ ,\ P=\lambda Q$

10) Théorème chinois

Prop: (Théorème chinois)

Si $m \wedge n = 1$ alors $\mathbb{Z}/mn\mathbb{Z}$ et $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ sont isomorphes par l'isomorphisme naturel

$$\begin{array}{ccc} \mathbb{Z}/mn\mathbb{Z} & \to & \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \\ \overline{k} & \mapsto & (\widehat{k}, \widetilde{k}) \end{array}$$

Démo:

Notons $f: \overline{k} \mapsto (\widehat{k}, \widetilde{k})$

f est bien une application (facile)

f est un morphisme d'anneaux (facile)

f est injective, en effet:

$$\begin{array}{ll} f(\overline{k}) = (\widehat{0}, \widetilde{0}) & \Rightarrow & \widehat{k} = \widehat{0} \ et \ \widetilde{k} = \widetilde{0} \\ & \Rightarrow & m|k \ et \ n|k \\ & \Rightarrow & mn|k \ (car \ m \wedge n = 1) \\ & \Rightarrow & \overline{k} = \overline{0} \end{array}$$

Enfin f est bijective puisque l'ensemble de départ et celui d'arrivée ont le même cardinal mn.

Résolution des systèmes de congruence de type

$$\begin{cases} x \equiv a \ [m] \\ x \equiv b \ [n] \end{cases}$$

où x l'inconnue dans
$$\mathbb{Z}$$
, a,b,m et n des entiers de \mathbb{Z} avec $m \wedge n = 1$ Notons (Σ) ce système
$$\left\{ \begin{array}{l} x \equiv a \ [m] \\ x \equiv b \ [n] \end{array} \right.$$

- 1) On trouve un couple $(u,v) \in \mathbb{Z}^2$ vérifiant la relation de Bezout mu+nv=1.
- 2) $x_0 = a(nv) + b(mu)$ est bien une solution particulière de (Σ)
- 3) La solution générale de (Σ) est de la forme

$$x = x_0 + kmn \ avec \ k \in \mathbb{Z}$$

Exercice d'application:

Résoudre dans Z les systèmes suivants :

1)
$$\begin{cases} x \equiv 2 & [6] \\ x \equiv 3 & [11] \end{cases}$$
2)
$$\begin{cases} x \equiv 2 & [6] \\ x \equiv 3 & [11] \\ x \equiv 4 & [7] \end{cases}$$

$$3) \begin{cases} 8x \equiv 4 \ [10] \\ 9x \equiv 3 \ [21] \end{cases}$$

11) Indicatrice d'Euler

Déf: (Fonction indicatrice d'Euler)

C'est l'application $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ définie par

$$\varphi(n) = card \left(\left\{ 1 \le k \le n \ / \ k \wedge n = 1 \right\} \right)$$

Exemples:

 $\varphi(8) = \dots; \varphi(p) = \dots$ où p est un nombre premier.

 $\varphi(n)$ est le nombre de générateurs du groupe $(\mathbb{Z}/n\mathbb{Z},+)$, et c'est aussi le nombre d'éléments inversibles de l'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$.

Prop:

- 1) $m \wedge n = 1 \Rightarrow \varphi(mn) = \varphi(m)\varphi(n)$
- 2) $\varphi(p^r) = p^r p^{r-1}$, où p un nombre premier et $r \in \mathbb{N}^*$.
- 3) Si $n=\prod_{i=1}^s p_i^{r_i}$ est la décomposition de n en facteurs premiers alors $\varphi(n)=n\prod_{i=1}^s (1-\frac{1}{p_i})$

alors
$$\varphi(n) = n \prod_{i=1}^{s} (1 - \frac{1}{p_i})$$

Démo:

1) $\mathbb{Z}/mn\mathbb{Z}$ et $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ sont isomorphes alors $card(U(\mathbb{Z}/mn\mathbb{Z})) = card(U(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}))$

$$=\varphi(mn)$$

Or $U(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}) = U(\mathbb{Z}/m\mathbb{Z}) \times U(\mathbb{Z}/n\mathbb{Z})$

Alors $card(U(\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z})) = \underbrace{card(U(\mathbb{Z}/m\mathbb{Z}))}_{=\varphi(m)} \times \underbrace{card(U(\mathbb{Z}/n\mathbb{Z}))}_{=\varphi(n)}$

D'où
$$\varphi(mn) = \varphi(m)\varphi(n)$$

2) Notons $A = \{1 \le k \le p^r / k \land p^r = 1\}$

Il s'agit de montrer que $card(A) = p^r - p^{r-1}$

Il est clair que $card(A) = p^r - card(\{1 \le k \le p^r/k \land p^r \ne 1\})$

On a $k \wedge p^r = 1 \Leftrightarrow k \wedge p = 1 \Leftrightarrow p \not| k$

D'où
$$card(A) = p^r - \underbrace{card(\{1 \le k \le p^r/p|k\})}_{=p^{r-1}}$$

car le nombre de multiples de p compris entre 1 et p^r est p^{r-1}

3) On a:

$$\begin{split} \varphi(n) &= \varphi\left(\prod_{i=1}^s p_i^{r_i}\right) &= \prod_{i=1}^s \varphi(p_i^{r_i}) \\ &= \prod_{i=1}^s p_i^{r_i} (1 - \frac{1}{p_i}) \\ &= \prod_{i=1}^s p_i^{r_i} \times \prod_{i=1}^s \left(1 - \frac{1}{p_i}\right) = n \prod_{i=1}^s \left(1 - \frac{1}{p_i}\right) \end{split}$$

Exemple: $\varphi(72) = \dots$

12) Théorème d'Euler

 $\begin{array}{l} \mathbf{Prop}: (\mathbf{Th\acute{e}or\grave{e}me\ d'Euler}) \\ a \wedge n = 1 \ \Rightarrow \ a^{\varphi(n)} \equiv 1 \ [n] \\ \hline \mathbf{D\acute{e}mo}: \\ a \wedge n = 1 \ \Rightarrow \ \overline{a} \in U(\mathbb{Z}/n\mathbb{Z}) \\ \ \Rightarrow \ \overline{a}^{\varphi(n)} = \overline{1} \ car \ card(U(\mathbb{Z}/n\mathbb{Z})) = \varphi(n) \\ \ \Rightarrow \ a^{\varphi(n)} \equiv 1 \ [n] \end{array}$

Corollaire:

Soit p un nombre premier. On a :

$$a \not\equiv 0 \ [p] \ \Rightarrow \ a^{p-1} \equiv 1 \ [p]$$

Démo:

$$a \not\equiv 0 \ [p] \Rightarrow p \not\mid a$$

 $\Rightarrow a \land p = 1 \ car \ p \ premier$
 $\Rightarrow a^{\varphi(p)} \equiv 1 \ [p] \ (thm \ d'Euler)$
 $\Rightarrow a^{p-1} \equiv 1 \ [p] \ car \ p \ premier$

III) Anneaux de polynômes à une indéterminée

 \mathbb{K} sera un sous-corps de \mathbb{C} , par exemple \mathbb{Q} , \mathbb{R} ou \mathbb{C}

- 1) Préambule:
 - a) $(K[X], +, \times)$ est un anneau commutatif intègre de neutres 0 et 1. Ainsi, on peut parler de divisibilité et d'association.
 - b) Les éléments inversibles de l'anneau $(K[X], +, \times)$ sont les polynômes constants non nuls ; càd

$$U(K[X]) = K^*$$

- c) P et Q sont associés $\Leftrightarrow \exists \lambda \in K^* / Q = \lambda P$
- d) On a aussi la division euclidienne tout comme vue au sup.
- 2) Idéaux de l'anneau $\mathbb{K}[X]$

Prop:

I est un idéal de $(K[X], +, \times)$ si et ssi I est de la forme AK[X]

Démo:

1) Si I est de la forme AK[X] alors c'est un idéal de K[X], car c'est l'idéal engendré par A.

2) Réciproquement, soit I un idéal de K[X].

Montrons qu'il est de la forme AK[X].

<u>Cas 1</u>: Si $I = \{0\}$, c'est évident, avec A=0.

<u>Cas 2</u>: Si $I \neq \{0\}$.

Soit $A \in I | \{0\}$ de degré <u>minimal</u>. On a I = AK[X], en effet :

- a) Pour $AK[X] \subset I$. C'est clair car I idéal contenant A.
- b) Pour $I \subset AK[X]$:

Soit $P \in I$. Montrons que $P \in AK[X]$

Par division euclidienne de P par A on obtient

$$P = AQ + R \ avec \ deg(R) < deg(A)$$

On a
$$R = \underbrace{P - AQ}_{\in I}$$
 donc $R \in I$

Ainsi $R \in I$ et deg(R) < deg(A)

Alors par définition de A, R est nul, et donc P = AQ et par suite $P \in AK[X]$.

Prop:

Soit I est un idéal non nul de $(K[X], +, \times)$.

- 1) Il existe un **unique** polynôme **unitaire** A_0 tel que $I = A_0 \mathbb{K}[X]$.
- 2) A_0 est de degré **minimal** parmi les polynômes **non nuls** de I.
- 3) PGCD de deux polynômes

Théorème et définition:

Soient A et B $\in \mathbb{K}[X]$ non nuls. Il existe un unique polynôme unitaire D $\in \mathbb{K}[X]$ tel que

$$A.\mathbb{K}[X] + B.\mathbb{K}[X] = D.\mathbb{K}[X]$$

D s'appelle le PGCD de A et B, et se note $D = A \wedge B$ NB :

Supposons $D = A \wedge B$. On a alors:

$$D|A, D|B, \ et \ si \ (C|A, C|B) \ alors \ C|D$$

Prop: $D = A \wedge B \implies (\exists U, V \in \mathbb{K}[X] \ tels \ que \ D = AU + BV)$ **NB**:

On définit d'une manière analogue le PGCD de plusieurs polynômes.

Déf:

A et B sont dits premiers entre eux si et ssi $A \wedge B = 1$.

Autrement dit:

$$A.\mathbb{K}[X] + B.\mathbb{K}[X] = \mathbb{K}[X]$$

Prop:

Si $a \neq b$ alors (X - a) et (X - b) sont premiers entre eux.

Prop:

 $A \wedge B = 1 \iff \exists U, V \in \mathbb{K}[X] \ tels \ que \ AU + BV = 1$

Prop: (théorème de Gauss) $(A|BC \ et \ A \land B = 1) \Rightarrow \ A|C$ **NB**:

La recherche des coéfficients de Bezout se fait de la même manière que pour les entiers relatifs.

4) Irréductibles de $\mathbb{K}[X]$

La définition d'un polynôme irréductible dans $\mathbb{K}[X]$ est la même que celle vue au sup.

Les polynômes de degré 1 sont irréductibles dans $\mathbb{K}[X]$.

On a de même encore la décomposition d'un polynôme non constant en produit de facteurs irréductibles :

$$P = \alpha \prod_{i=1}^{n} P_i^{r_i}$$

où les P_i sont unitaires ,irréductibles et distincts deux à deux.

Et que cette décomposition est unique à ordre près.

On rappelle que les polynômes irréductibles dans $\mathbb{C}[X]$ sont ceux de degré 1. Et les polynômes irréductibles dans $\mathbb{R}[X]$ sont ceux de degré 1 et ceux de degré 2 à discriminent strictement négatif.

IV) Structure d'algèbre

 $\mathbb K$ est un sous-corps de $\mathbb C$

1) Algèbre

Déf: $(A, +, \cdot, \times)$ est une **K-algèbre** si et ssi les conditions suivantes sont satisfaites :

- a) $(A, +, \cdot)$ est un K-espace vectoriel.
- b) $(A, +, \times)$ est un anneau.
- c) $\forall x, y \in A, \ \forall \lambda, \mu \in K, \ (\lambda x) \times (\mu y) = (\lambda \mu)(x \times y)$

Exemples usuels d'algèbres :

$$(K[X], +, \cdot, \times), (L(E), +, \cdot, \circ), (M_n(K), +, \cdot, \times), (F(X, K), +, \cdot, \times)$$

2) Sous-algèbre

Déf:

Soit $B \subset A$, où $(A, +, \cdot, \times)$ est une algèbre.

B est une sous-algèbre de A si et ssi

$$\begin{aligned} &1 \in B \\ &\forall x,y \in B, \ \forall \lambda \in K, \ (\lambda x + y) \in B \\ &\forall x,y \in B, \ x \times y \in B \end{aligned}$$

Prop:

Toute sous-algèbre est une algèbre (pour les lois héritées de A)

3) Morphisme d'algèbre

Prop:

Soient A et B deux algèbres et $f:A\mapsto B$ une application. f est dite $morphisme\ d'algèbres$ si et ssi

$$f(1) = 1$$

$$\forall x, y \in A, \ \forall \lambda \in K, \ f(\lambda x + y) = \lambda f(x) + f(y)$$

$$\forall x, y \in A, \ f(x \times y) = f(x) \times f(y)$$

Prop:

Soient A et B deux algèbres et $f:A\mapsto B$ un morphisme d'algèbres.

- 1) Im(f) est une sous-algèbre de B.
- 2) Ker(f) est un $id\acute{e}al$ de A.