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ESTIMATIONS NUMERIQUES D’'INTEGRALES

Partie I - « Permutation limite-intégrale » et intégrale de Gauss

1.1 - Utilisation d’une série entiere
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Ql. VzeR, e ® = Z #, série entiere de rayon de convergence infini.
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En intégrant la série entiere sur [0, 1], segment inclus dans le disque ouvert de convergence, on
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Q2. On applique le critere des séries alternées :
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En notant r, le reste d’ordre n de la série, on a donc |I — s,| = |r,| < =
(2n+3)(n+ 1)!
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On a donc bien ||I — s,| <

Q3.
def factorielle(n):
if n <= 1:
return 1
return n*xfactorielle(n-1)
Q4.
N =1
while (2xN+3)x*factorielle(N+1) < 10%*6:
N=N+1
print (N)



(on trouve N=8)

1.2 - Utilisation d’une autre suite de fonctions
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Q5. Soit z € [0, 400, pour n > z? on a -2 > 0et folz) = (1 .
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La suite de fonctions (f,,)nen+ converge simplement sur [0, 400 vers z — e~
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Q6. En étudiant la fonction ¢t — In(1 +¢) — ¢, on montre que pour tout ¢ > —1, In(1+¢) < t.
Pour z € [0,1] et n € N*, on a donc, compte tenu de la croissance de I'exponentielle :
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0 < fu(z) =exp (nln (1 - —

En utilisant le binéome de Newton :

(1)

x2 n n
o =(1-2) =%

" k=0
On integre entre 0 et 1 :
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On utilise ensuite le théoreme de convergence dominée pour montrer que lim

1

| t@as

e (f,) est une suite de fonctions continues sur [0, 1]

e la suite (f,) converge simplement sur [0,1] vers la fonction f : x +— e~

sur [0, 1].
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qui est continue

o Vn € N* Vo € [0,1], |fu(x)] < f(x) et f est positive, continue et donc intégrable sur

0, 1].
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On a donc bien lim / fo(x)de = / f(z)dz et finalement,
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