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Exercices

MP

Suites et séries de fonctions

Exercice 1:

Pour n € N*, on pose
un(z) = 2" Inz avec z € ]0;1] et u,(0) =0
Etudier la convergence uniforme de la suite de fonctions (u,),>1 sur [0;1].

Exercice 2:

On pose
.

up(z) = e " sin(nx) avec x € Ry

a) Etudier la convergence simple de la suite de fonctions (uy,) sur [0; +ool.

b) Etudier la convergence uniforme sur [a; +oo[ avec a > 0.

c) Etudier la convergence uniforme sur [0; 4o00].
Exercice 3:
Soit fp: [0;1] — R définie par
fn(x) =n2x(1 —nx) siz €[0;1/n] et fn(z) =0 sinon

a) Etudier la limite simple de la suite (f,,).

b) Calculer
1
[ fatoya
0

Y a-t-il convergence uniforme de la suite de fonction (fy,)?

¢) Etudier la convergence uniforme sur [a ;1] avec a > 0.

Exercice 4:

Pour z > 0, on pose

+00 n
n=0

n+x

a) Justifier que S est définie et de classe C* sur RY.
b) Préciser le sens de variation de S.
¢) Etablir
Ve >0,S(z+1)+S(x)=1/x

d) Donner un équivalent de S en 0.

e) Donner un équivalent de S en +oo.

Exercice 5:
On considere la série des fonctions
fulz) = nate= ™"

définies sur R;.
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MP

Etudier sa convergence simple, sa convergence normale et sa convergence

uniforme.

Exercice 6:

On note 15 la fonction caractéristique d’un intervalle I :

1 sizel
1](.’1)):{

0 sinon

Etudier la convergence simple, uniforme et normale sur [0;4o0c[ de la série des

fonctions 1

un(x) = ml[n;n+1[(x)

Exercice 7:

Soit (an)nen une suite réelle positive et décroissante. Pour tout n € N, on pose

un(z) = apz™(1 — x) avec x € [0;1]

a) Montrer la convergence simple de la série de fonctions ) u,.

b) Montrer que cette série converge normalement si, et seulement si, il y a

convergence de la série Y a, /n.

c) Montrer que la série de fonctions Y u, converge uniformément si, et

seulement si, a,, — 0.

Exercice 8:

Considérons la fameuse fonction zéta de Riemann
“+00
1
C(x)=) —

n®
n=1

1) Montrer que (¢ est de classe C* sur |1, +o0].

2) Etudier la monotonie et la convexité de (.

3) Déterminer la limite de ¢ en +o0.

4) i) Déterminer la limite de ¢ en 1.
ii) Déterminer un équivalent simple de ¢ en 1.
iii) Tracer l'allure de la courbe de (.

5) Montrer que la fonction z — In({(x)) est convexe sur |1, +o0l.
Vous pouvez appliquer l'inégalité de Cauchy-Schwarz.

Exercice 9:

On pose

Montrer que la fonction (3 est définie et de classe C* sur ]0; +ool.
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MP

Exercice 10:

Soit I 1 1
zj)(ar)zz <n—x a n—i—:v)

n=2

Justifier I'existence de l'intégrale suivante, et calculer-la.

/01 Y(x)da

Exercice 11:

On pose
up(z) = (=1)" 22" 2 Ing pour z € 10;1] et u,(0) =0

a) Calculer
400
n=0

b) Montrer que la série des u,, converge uniformément sur [0;1].

¢) En déduire 1'égalité

1 oo 1
Inz (1)t

dx = —_—

/0 T+a2 " ;(QnH)Q

Exercice 12:

Ensemble de définition et continuité de
—+oo
fla)y=> e ™"
n=0

En trouver la limite en 4+o0c et un équivalent en 0.

Exercice 13:

N~ (=D
Pour ¢ > 0, on pose S(t) = Z
n=0

Déterminer la limite de S(t) quand t — 0.
Exercice 14:
+oo
Soit f(x) = Z e/
n=1

a) Quel est le domaine de définition de f?
Etudier la continuité de f sur celui-ci.
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b) Montrer que f est strictement décroissante.
¢) Etudier la limite de f en +ooc.

d) Déterminer un équivalent simple de f(z) quand z — 0F.

Exercice 15:
Pour tout z € R\ {—1} et n € N* on pose

(_1)n—1 "
n 1+

un(w) =

a) Justifier que la fonction f: z — Z:ﬁ un(x) est définie sur R\ {—1}.
b) Etablir que pour tout x # 0,

f@)+ f(1/x) =

¢) Etablir que f est continue sur |—1;1[ puis que f est continue sur |—oo; —1] et
J1;+ool.
d) Etablir la continuité de f en 1.

Exercice 16:

Soit « un réel. Pour tout entier n > 0 et tout réel x, on pose
,rLOt‘,I: e—nac

Up(r) = ———

n(@) n?+1

On note I le domaine de définition de
S:x— Z Unp ()
n=0

Déterminer 1.

Montrer que S est continue sur R .
A-t-on convergence normale sur Ry ?
On suppose « > 2. Montrer que

oo

> u(l/n)

k=n-+1

ne tend pas vers 0 quand n tend vers 4oc0.
La convergence de la série de fonctions ) u,, est-elle uniforme sur I?

e) Etudier la continuité de S sur I.
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Exercice 17:

On suppose M, (K) muni d’une norme ||.|| vérifiant
VA, B € My (K), [|AB|| < [[A] | B]]
Soit A € M,,(K). Pour |¢t| < 1/||A||, on pose

+oo
OEDIS
k=0

a) Montrer que f est bien définie et que f(t) = (I —tA)~L.
b) Justifier que f est de classe C! et que f/(t) = A(I —tA)~2

Exercice 18:

On suppose M, (K) muni d’une norme notée ||.|| vérifiant
VA, B € Mn(K), |AB|| < [[A]l | B]|

Soit A € M,,(K). Pour [t| < 1/||A|| on pose
+oo 1
t)y=> —tha"
f(®) ; p

a) Montrer que f est bien définie.

b) Justifier que f est de classe C! et que

(I—tA)f (1) = A

Fin
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Exercice 1:

Pour n € N*, on pose
unp(z) = 2" Inz avec € |0;1] et u,(0) =0

Etudier la convergence uniforme de la suite de fonctions (uy,),>1 sur [0;1].
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Fin Exercice 1
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Exercice 2:

On pose

n

un(x) = e " sin(nx) avec x € Ry

a) Etudier la convergence simple de la suite de fonctions (uy,) sur [0;4oal.
b) Etudier la convergence uniforme sur [a ;400 avec a > 0.

¢) Etudier la convergence uniforme sur [0 ; +ocl.

N/

On pose

T

u,(xr) = e "*sin(nzx) avec r € Ry

a) Etudier la convergence simple de la suite de fonctions (u,,) sur [0;+o0|.

Solution

Notrs 1 fc Boce tinle e L auide o fonchins (Up) ton Loveoal
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On pose

—nT

unp(x) = e "*sin(nx) avec x € Ry

a) Etudier la convergence simple de la suite de fonctions (u,) sur [0; +ool.

b) Etudier la convergence uniforme sur [a; +oo[ avec a > 0.
Solution
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On pose

~"sin(nx) avec z € Ry

un(x) =€
a) Etudier la convergence simple de la suite de fonctions (uy,) sur [0; +ool.
b) Etudier la convergence uniforme sur [a ; +oo[ avec a > 0.

¢) Etudier la convergence uniforme sur [0 ; +ool.

Solution
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Exercice 3:

Soit fn: [0;1] — R définie par

fn(z) =n’z(1 —nx) siz € [0;1/n] et fr(xz) = 0 sinon

a) Etudier la limite simple de la suite (f,).

b) Calculer
1
| natyar
0

Y a-t-il convergence uniforme de la suite de fonction (f,)?

¢) Etudier la convergence uniforme sur [a ;1] avec a > 0.

Soit f,,: [0;1] — R définie par

fo(xz) =nz(1 —nz)siz €[0;1/n] et f,(xz) = 0 sinon
a) Etudier la limite simple de la suite (f,).

Solution

NO'H‘MS ({ f( ﬁww',“' AM“T!( »dc jd ‘&wuh e fe’“ﬁ%‘d (j;)n’a"‘h [-0‘ i:' :
DeAecwmmms 1.
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Soit f:[0;1] — R définie par
fo(z) =n*2(1 —nz) six €[0;1/n] et f,,(z) =0 sinon

a) Etudier la limite simple de la suite (f,).

b) Calculer
1
/ fn(t)dt
0

Y a-t-il convergence uniforme de la suite de fonction (f;,)?

Solution

b)4) St nem” Ons
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A
n
:J mzy[/umr) A
Q

_ % [nj,g.; CH@[J).
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Soit frn:[0;1] — R définie par
fo(x) =n?2(1 —nzx)siz € [0;1/n] et f,(z) = 0 sinon

a) Etudier la limite simple de la suite (f,).

b) Calculer
1
/ Fa() dt
0

Y a-t-il convergence uniforme de la suite de fonction (f,,)?

¢) Etudier la convergence uniforme sur [a ;1] avec a > 0.

Solution
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Exercice 4:

Pour z > 0, on pose

+o0 n

nzon—i—x

a) Justifier que S est définie et de classe C' sur RY.

b) Préciser le sens de variation de S.

c¢) Etablir
Ve >0,5(x+1)+S(x)=1/z

d) Donner un équivalent de S en 0.

e) Donner un équivalent de S en +oo.

Felbin

h+X

+%° n
St) =7 40y { B L
n=7J 4

a) Justifier que S est définie et de classe C' sur R*.
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:7%*2’4‘]0/-]'@0[ . /,/M?m S(") e -
m"‘ G “+oo
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=0

e Lo beie 7 7L G

h+ 2
h>/0
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b) Préciser le sens de variation de S.
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c¢) Etablir

Vx> 0,S(z+1)+S(x) =1/

= (—Dh _
S(x)_—: o 'Z“f\a»/“#ﬁ”“’( XYy 0
n=40

70/9% I?O.@nc.‘ .

+ (_4)\/1 H)"
o) rsb) = 3 mn P
w=0 N =0

_ Z ((/l)

v+ nHﬁt)

iy NN
Z ( N+ V\‘{-/l‘f'-)l)
W =p

S:\,{mﬂ CV, a |35,

Z(V" ) = %

"1—91'00

d) Donner un équivalent de S en 0.

On 4+ (Vz\(o, S(’l)ﬂ’Sﬁ-ﬂ)f{‘?)
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— SR %
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[

e) Donner un équivalent de S en +oo.

On A % (\{x\[o, SE) 4+ Sh) :—i—)

At sma :
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Exercice 5:

On considere la série des fonctions

Falp)= nzle V"
définies sur R .

Etudier sa convergence simple, sa convergence normale et sa convergence
uniforme.
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Exercice 6:

On note 1; la fonction caractéristique d’'un intervalle I :

1 sizel
11(37)2{

0 sinon

Etudier la convergence simple, uniforme et normale sur [0;+oo[ de la série des

fonctions )

Uun () = N 11[n;TL+1[(93)
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On note 1; la fonction caractéristique d'un intervalle I :

1 sizel
11(33):{

0 sinon

Etudier la convergence simple, uniforme et normale sur [0; +oo[ de la série des

fonctions ]

n+1

un(m) — 1[n;n+1[($)
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On note 1; la fonction caractéristique d'un intervalle I :
1 sizel
1i(z) = { .
0 sinon

Etudier la convergence simple, uniforme et normale sur [0; +oo| de la série des

fonctions ]

n+1

Un(T) = 1[n;n+1[($)
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Exercice 8 :

Considérons la fameuse fonction zéta de Riemann
+o00 al
((z) = Z:l =

1) Montrer que ( est de classe C™ sur |1, 4+-oa].
2) Etudier la monotonie et la convexité de (.
3) Déterminer la limite de ¢ en +oc.
4) 1) Déterminer la limite de ¢ en 1.

ii) Déterminer un équivalent simple de ¢ en 1.

iii) Tracer l'allure de la courbe de (.

5) Montrer que la fonction @ — In({(x)) est convexe sur |1, +oc|.
Vous pouvez appliquer l'inégalité de Cauchy-Schwarz.
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1 mn="%
:D,C@fﬁ,{/‘“‘/ i _

Yot () o AL

1) i) Déterminer la limite de ¢ en 1.
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ii) Déterminer un équivalent simple de ¢ en 1.

ClZ . On weadee () fuio o e Jlx) ~ 7

WUy 4.
fd’l?i ' 400 ,
0u - 2, % y
ln‘ A \ padroduit |6 demme
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iii) Tracer I'allure de la courbe de (.

/A

1 k — —

I
I
I
] =

5) Montrer que la fonction x — In({(x)) est convexe sur |1, +o0].
Vous pouvez appliquer l'inéqgalité de Cauchy-Schwarz.

C?’M!l'/cltf’eqﬁ /Fa /fmcﬁw )11/7 (5(1))
b e bo i AM 7{9:/3 A&f{wal/t ijfl(—l—oo[)df'w a
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Exercice 9:

On pose

Montrer que la fonction (, est définie et de classe C! sur ]0; +oo.

Tobudion
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Exercice 11:

On pose
up(z) = (=1)" 12?2 Inz pour z €]0;1] et u,(0) =0

a) Calculer
+o00
Y un(x)
n=0

b) Montrer que la série des u,, converge uniformément sur [0;1].

c) En déduire I’égalité

U Inz = (=1)+
fo 1+ 2 dx—z(2n+1)2

n=0
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z2n+2

Nl e Jo4]
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CQVIC Jusim
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20 4%72,
)=
h =0
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b) Montrer que la série des u,, converge uniformément sur [0;1].
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Exercice 14:

+ o0
Soit f(x) = Z p =R
n=1

a) Quel est le domaine de définition de f 7
Etudier la continuité de f sur celui-ci.

b) Montrer que f est strictement décroissante.

¢) Etudier la limite de f en +ooc.

d) Déterminer un équivalent simple de f(z) quand x — 0.
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¢) Etudier la limite de f en +oo
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d) Déterminer un équivalent simple de f(z) quand z — 0.
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