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Nicolas Basbois & Damien Broizat
Institut Stanislas, Cannes - Lycée Jules Ferry

EXERCICE I

I.1. Supposons que l’équation différentielle (E) possède une solution développable en série

entière sur ] − r; r[ (avec r > 0), notée y : x 7→
+∞∑
n=0

anx
n. En dérivant deux fois cette

série entière terme à terme sur son intervalle ouvert de convergence, on obtient pour tout
x ∈]− r; r[ :

(x2−x)y′(x) = (x2−x)
+∞∑
n=1

nanx
n−1 =

+∞∑
n=0

nanx
n+1−

+∞∑
n=0

nanx
n =

+∞∑
n=1

(n−1)an−1x
n−

+∞∑
n=0

nanx
n,

ainsi que

x2y′′(x) = x2
+∞∑
n=2

n(n− 1)anxn−2 =
+∞∑
n=2

n(n− 1)anxn =
+∞∑
n=0

n(n− 1)anxn.

En sommant ces développements en série entière, il vient, pour tout x ∈]− r; r[ :

x2y′′(x) + (x2 − x)y′(x) + 2y(x) =
+∞∑
n=0

n(n− 1)anxn +
+∞∑
n=1

(n− 1)an−1x
n −

+∞∑
n=0

nanx
n +

+∞∑
n=0

2anxn

=
+∞∑
n=1

(
(n2 − 2n+ 2)an + (n− 1)an−1

)
xn + 2a0.

Puisque y est solution de (E), on obtient par unicité du développement en série entière les

relations
{

2a0 = 0
∀n ≥ 1, (n2 − 2n+ 2)an + (n− 1)an−1 = 0 .

Puisque n2−2n+2 = 1+(n−1)2 6= 0, ces relations se réécrivent
{
a0 = 0
∀n ≥ 1, an = 1−n

1+(n−1)2
an−1

,

ce qui entrâıne la nullité de la suite (an)n∈N par une récurrence immédiate.
En conclusion, on a montré qu’une telle solution est nécessairement la fonction nulle.
Il n’existe donc pas de solution non nulle de (E) qui soit développable en série entière au
voisinage de 0.
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