# Structures algébriques usuelles Résumé

### 2) Produit fini de groupes

Soient  $(G_1, *_1), \ldots, (G_n, *_n)$  des groupes.

– loi produit définie sur le prduit cartésien  $G_1 imes \cdots imes G_n$  :

$$(x_1,\ldots,x_n)*(y_1,\ldots,y_n)=(x_1*_1y_1,\ldots,x_n*_ny_n)$$

### Prop:

Si  $(G_1, *_1), \ldots, (G_n, *_n)$  des groupes d'éléments neutres respectifs  $e_1, \ldots, e_n$ , alors  $G_1 \times \cdots \times G_n$  est un groupe de neutre le n-uplet  $(e_1, \ldots, e_n)$ .

### Il est à noter que :

- si  $(G_1, *_1), \ldots, (G_n, *_n)$  sont abéliens alors  $G_1 \times \cdots \times G_n$  l'est aussi.
- L'inverse de  $(x_1, \ldots, x_n)$  est  $(x_1, \ldots, x_n)^{-1} = (x_1^{-1}, \ldots, x_n^{-1})$

## 3) L'ensemble $\mathbb{Z}/n\mathbb{Z}$

### Prop:

La congruence  $\equiv$  est une relation d'équivalence sur  $\mathbb{Z}$ .

### NB:

 $-\overline{a}$ , la classe d'équivalence de a, est donnée par :

$$\overline{a} = \{a + kn/k \in \mathbb{Z}\}\$$

$$- \overline{a} = \overline{b} \Leftrightarrow a \equiv b[n]$$

$$- \overline{a} = \overline{0} \Leftrightarrow n/a,$$

## **Notation:**

L'ensemble quotient de  $\mathbb{Z}$  est noté  $\mathbb{Z}/n\mathbb{Z}$ .

## NB:

$$\mathbb{Z}/n\mathbb{Z} = \{ \overline{a}/a \in \mathbb{Z} \}$$

## Prop:

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \dots, \overline{n-1}\}$$

# Prop:

$$\begin{cases} a \equiv b \ [n] \\ c \equiv d \ [n] \end{cases} \Rightarrow \begin{cases} a+c \equiv b+d \ [n] \\ ac \equiv bd \ [n] \end{cases}$$

Deux lci se définissent sur  $\mathbb{Z}/n\mathbb{Z}$ ; la somme et le produit :

$$\overline{a+b} = \overline{a} + \overline{b}$$
 et  $\overline{a \times b} = \overline{a} \times \overline{b}$ 

## Prop:

 $(\mathbb{Z}/n\mathbb{Z},+)$  est un groupe abelien de neutre  $\overline{0}$ , et de cardinal n.

# 4) Sous-groupes

### NB:

{e} et G sont des sous groupes triviaux de G.

### Prop:

Un ssgr est aussi un groupe.

### Prop:

Les ssgr de  $(\mathbb{Z},+)$  sont exactement les  $n\mathbb{Z}$  avec  $n \in \mathbb{N}$ ; où  $n\mathbb{Z} =$  $\{nk/k \in \mathbb{Z}\}$ 

L'intersection d'une famille de ssgr est un ssgr :

Si tous les  $F_i$  sont des ssgr de G, alors  $\bigcap H_i$  l'est auusi.

 $i \in I$ 

### NB:

la réunion de 2 ssgr n'est en général pas un ssgr. Toutefois, on a :

 $H \cup K$  est un ssgr  $\Leftrightarrow$   $(H \subset K$  ou  $K \subset H)$ 

## 5) Sous-groupe engendré par une partie

(G,.)sera un groupe.

#### Déf:

Soit A une partie de G.

Le sous-groupe de G engendré par A es l'intersection de tous les sous-groupes de G contenant A.

On le note  $\langle A \rangle$ .

### NB:

$$\langle A \rangle = \bigcap_{H = I} H$$

où  $I = \{\bar{H} \ ssgr \ de \ G/A \subset H\}$ ; l'ensemble des sous-groupes contenant A.

### Prop:

<A> est le plus petit sous-groupe de G contenant A.

### Vocab:

Si G=<A>, A est dite partie génératrice de G. On dit aussi que G est engendré par A.

- Ainsi A est une partie génératrice du groupe  $<\!A\!>$ 

### Prop:

Soit A une partie d'un groupe (G,.).

Si tout élément de G s'écrit comme produit d'éléments de A alors A est une partie génératice de G; càd que G est engendré par A.

Soit  $a \in G$ .

$$<\!\{a\}\!>=\!\{a^k/k\in\mathbb{Z}\}$$

### Notation et vocabulaire:

Soit  $a \in G$ .

 $\{a^k/k \in \mathbb{Z}\}$  se note aussi <a> et s'appelle le sous-groupe engendré par a.

### NB:

Si (G,+) est additif, on a

$$\langle a \rangle = \{ka/k \in \mathbb{Z}\}$$

Par exemple dans le groupe  $(\mathbb{Z}, +)$ ,on a <n $>=\{kn/k \in \mathbb{Z}\}$  qui se note  $n\mathbb{Z}$ .

## 6) Morphisme de groupes

### Déf:

On appelle morphisme du groupe  $(G_1, T_1)$  vers le groupe  $(G_2, T_2)$  toute application f définie de  $G_1$  vers  $G_2$  vérifiant

$$\forall x, y \in G, f(xT_1y) = f(x)T_2f(y)$$

### Vocabulaire:

- i) Si f est un morphisme de G vers lui-même, on dit que f est un endomorphisme de G.
- ii) Un morphisme bijectif est dit isomorphisme.
- iii) Un endomorphisme bijectif de G est dit automorphisme de G.
- iv) Deux groupes sont dits *isomorphes* s'il existe un isomorphisme entre eux.

- 1) La composée de deux morphismes (resp. endomorphismes) (resp. isomorphismes) est un morphisme (resp. endomorphisme) (resp. isomorphisme)
- 2) La réciproque d'un isomorphisme est un isomorphisme.

### NB:

 $(Aut(G), \circ)$  est un groupe; où Aut(G) est l'ensemble des automorphismes de G.

## Prop

Soit f un morphisme du groupe G vers G'. Soient e et e' les éléments neutres respectifs. On a :

- 1) f(e) = e'
- 2)  $\forall x \in G, \ f(x^{-1}) = f(x)^{-1}$
- 3)  $\forall x \in G, \ \forall m \in \mathbb{Z}, \ f(x^m) = f(x)^m$

Définition et proposition : (Noyau et image d'un morphisme) Soit f un morphisme du groupe G vers G'. Soit e' l'élément neutre de G'.

1) Le noyau de f est

$$ker(f) = f^{-1}(\{e'\}) = \{x \in G/f(x) = e'\}$$

2) L'image de f est

$$Im(f) = f(G) = \{f(x)/x \in G\}$$

3) Ker(f) et Im(f) sont des sous-groupes resp de G et G'.

### Prop:

Soit f un morphisme du groupe G vers G. Soit e le neutre de G.

- 1) f est injectif  $\Leftrightarrow ker(f) = \{e\}$
- 2) f est surjectif  $\Leftrightarrow Im(f) = G'$

## 7) Groupes monogènes. Groupes cycliques

#### Déf:

- i) Un groupe G est dit  $monog\`ene$  s'il existe un élément  $a{\in}G$  tel que  $G{=}{<}a{>}.$ 
  - a est dit dans ce cas un générateur de G.
- ii) Un groupe monogène fini est dit groupe cyclique.

### NB:

Tout groupe monogène est commutatif.

La réciproque est en général fausse :

### Clé à retenir:

Soit H un sous-groupe de G. Soit  $a \in G$ . On a

$$< a > \subset H \Leftrightarrow a \in H$$

### Prop:

 $\overline{m}$  est générateur de  $\mathbb{Z}/n\mathbb{Z} \Leftrightarrow m \wedge n = 1$ 

### Prop:

- 1) Tout groupe monogène infini est isomorphe à  $(\mathbb{Z},+)$
- 2) Tout groupe cyclique de cardinal n est isomorphe à  $(\mathbb{Z}/n\mathbb{Z}, +)$

8) Ordre d'un élément

#### Déf:

Soit (G,.) un groupe de neutre e. Soit  $a \in G$ .

- 1) a est dit d'ordre fini si et seulement s'il existe  $n \in \mathbb{N}^*$  tel que  $a^n = e$
- 2) Dans ce cas, l'ordre de a est le plus petit entier  $n \in \mathbb{N}^*$  vérifiant  $a^n = e$ .

## Cas d'un groupe additif (G,+):

- 1) a est dit d'ordre fini si et seulement s'il existe  $n \in \mathbb{N}^*$  tel que na = 0
- 2) Dans ce cas, l'ordre de a est le plus petit entier n vérifiant na = 0.

### Prop:

Supposons o(a)=n, on a:

- 1)  $a^k = e \Leftrightarrow n/k$
- 2)  $a^k = a^l \Leftrightarrow n/(k-l) \Leftrightarrow k \equiv l[n]$

### Prop

Si o(a)=n alors <a>, le sous-groupe engendré par a, est de cardinal n.

On a précisemment :  $\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}\$ 

### Prop

Supposons que G est un groupe fini et card(G)=n. Alors on a :

- 1)  $\forall a \in G, \ a^n = e$
- 2) Tout élément a de G est d'ordre fini, et on a o(a)/n

# II) Structure d'anneau

# 1) Rappels et compléments de SUP

#### Calcul dans un anneau:

 $(A,+,\times)$ un anneau et  $a,b\in A$  tels que **ab=ba**. On a :

i. 
$$(ab)^n = a^n b^n$$

ii. 
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
: Binôme de Newton

iii. 
$$a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^k b^{n-1-k}$$
 : Egalité de Bernoulli

### Prop:

 $(U(A), \times)$ , l'ensemble des éléments inversibles de A, est un groupe.

#### NB:

U(A) se note aussi  $A^{\times}$ .

U(A) s'appelle le groupe des unités de A.

## Prop:

Dans un anneau intègre, on a

$$ab = 0 \Leftrightarrow (a = 0 \text{ ou } b = 0)$$

### Déf:

a est nilpotent si et ss'il existe  $n \in \mathbb{N}^*$  tel que  $a^n = 0$ 

L'indice de nilpotence de a est le plus petit entier p tel que  $a^p = 0$ 

### 2) Produit fini d'anneaux

Soient  $(A_1, +, \times), \ldots, (A_n, +, \times)$  des anneaux.

Considérons les deux lois  $+ et \times$  définies naturellement sur le produit cartésien  $A_1 \times \cdots \times A_n$  par

$$\begin{cases} (a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n) \\ (a_1, \dots, a_n) \times (b_1, \dots, b_n) = (a_1 \times b_1, \dots, a_n \times b_n) \end{cases}$$

1)  $(A_1 \times \cdots \times A_n, +, \times)$  est un anneau et que

$$0_{A_1 \times \dots \times A_n} = (0_{A_1}, \dots, 0_{A_n}) \ et \ 1_{A_1 \times \dots \times A_n} = (1_{A_1}, \dots, 1_{A_n})$$

- 2)  $(a_1, \ldots, a_n)$  est inversible  $\Leftrightarrow a_1, \ldots, a_n$  le sont. Dans ce cas  $(a_1, \ldots, a_n)^{-1} = (a_1^{-1}, \ldots, a_n^{-1})$
- 3)  $U(A_1 \times \cdots \times A_n) = U(A_1) \times \cdots \times U(A_n)$
- 4) En particulier, si  $(A, +, \times)$  est un anneau, alors  $(A^n, +, \times)$  l'est aussi et on

$$U(A^n) = (U(A))^n$$

## 3) Sous-anneaux

#### Déf:

Soit  $(A,+,\times)$  un anneau. Soit B une partie de A.

B est dite sous-anneau de A si et ssi

$$\begin{cases} a) \ 1 \in B \\ b) \ \forall x, y \in B, x - y \in B \\ c) \ \forall x, y \in B, x \times y \in B \end{cases}$$

### Prop:

Un sous-anneau est à son tour un anneau.

## 4) Morphisme d'anneaux

### Déf:

Soit f une application définie d'un anneau A vers un anneau B. f est dite morphisme d'anneaux si et ssi

- 1) f(1)=1
- $2) \ \forall x, y \in A, \ f(x+y) = f(x) + f(y)$
- 3)  $\forall x, y \in A, \ f(x \times y) = f(x) \times f(y)$

#### Vocabulaire:

- 1) Un morphisme d'anneaux bijectif est dit isomorphisme d'anneaux.
- 2) Deux anneaux sont dits *isomorphes* s'il existe un morphisme d'anneaux entre eux.

### Prop:

- 1) La composée de deux morphismes d'anneaux est un morphisme d'anneaux.
- 2) La *composée* de deux isomorphismes d'anneaux est un isomorphisme d'anneaux.
- 3) La *réciproque* d'un isomorphisme d'anneaux est un isomorphisme d'anneaux.

### Prop:

- 1) La composée de deux morphismes d'anneaux est un morphisme d'anneaux.
- 2) La *composée* de deux isomorphismes d'anneaux est un isomorphisme d'anneaux.
- 3) La réciproque d'un isomorphisme d'anneaux est un isomorphisme d'anneaux.

### Prop:

Soit f un morphisme d'anneaux de A vers B. On a :

- 1) f(0)=0
- 2)  $\forall x \in A, \forall n \in \mathbb{N}, f(x^n) = (f(x))^n$
- 3)  $\forall x \in A, \forall m \in \mathbb{Z}, f(mx) = mf(x)$
- 4) Si  $x \in A$  est inversible alors son image f(x) l'est aussi, et on a  $(f(x))^{-1} = f(x^{-1})$

## 5) Noyau et image d'un morphisme d'anneaux

**Déf**: (noyau et image) <sup>2</sup>

Soit f un morphisme d'anneaux de A vers B.

1) Le noyau de f:

$$ker(f) = \{x \in A / f(x) = 0\} = f^{-1}\{0\}$$

2) L'image de f:

$$Im(f) = \{f(x)/x \in A\} = f(A)$$

### Prop:

Soit f un morphisme d'anneaux de A vers B. On a :

- 1) Im(f) est un sous-anneau de B
- 2) f est injective  $\Leftrightarrow ker(f) = \{0\}$
- 3) f est surjective  $\Leftrightarrow Im(f) = B$

## 6) Sous-corps

### Déf:

Soit  $(K,+,\times)$  un corps. Soit B une partie de K.

B est dite sous-corps de K si et ssi

$$\begin{cases} a) \ 1 \in B \\ b) \ \forall x, y \in B, x - y \in B \\ c) \ \forall x, y \in B, x \times y \in B \\ d) \ \forall x \in B | \{0\}, x^{-1} \in B \end{cases}$$

c) 
$$\forall x, y \in B, x \times y \in B$$

d) 
$$\forall x \in B | \{0\}, x^{-1} \in B$$

**Prop**: Un sous-corps est à son tour un corps.

# 7) L'anneau $\mathbb{Z}/n\mathbb{Z}$

**Prop**: Soit  $n \ge 2$ .

- 1)  $(\mathbb{Z}/n\mathbb{Z}, +, \times)$  est un anneau commutatif de neutres  $\overline{0}$  et  $\overline{1}$
- 2)  $\overline{m}$  est inversible dans  $\mathbb{Z}/n\mathbb{Z} \iff m \land n = 1$
- 3)  $(\mathbb{Z}/p\mathbb{Z}, +, \times)$  est un corps  $\Leftrightarrow p$  est un nombre premier

### 8) Idéal d'un anneau commutatif

 $(A, +, \times)$  sera dans ce paragraphe un anneau commutatif de neutre

**Déf** : Soit  $I \subset A$ .

I est un idéal de A si et ssi les trois conditions suivantes sont satisfaites:

- 1)  $0 \in I$
- 2)  $\forall x, y \in I, \ x + y \in I$
- 3)  $\forall x \in I, \ \forall y \in A, \ x \times y \in I$

NB:

- a)  $\forall x \in I, -x \in I \ (vient \ de \ 3))$
- b) I est un sous-groupe de (A, +)
- c)  $\{0\}$  et A sont des idéaux de A

Prop:

- 1) Les idéaux de  $(\mathbb{Z}, +, \times)$  sont les  $n\mathbb{Z}$ .
- 2) Soit I un idéal de A. On a

$$I = A \Leftrightarrow 1 \in I$$

- 3) Le noyau d'un morphisme d'anneaux est un idéal.
- 4) L'intersection de deux idéaux est un idéal.
- 5) La somme de deux idéaux est un idéal; avec la notation naturelle suivante

$$I + J = \{x + y/x \in I \text{ et } y \in J\}$$

### **Prop et déf :** Soit $a \in A$ .

- 1)  $aA = \{ax/x \in A\}$  est un idéal de A.
- 2) aA s'appelle l'idéal engendré par a.
- 3) aA est le plus petit idéal de A contenant a.
- 9) Divisibilité dans un anneau commutatif intègre  $(A, +, \times)$  sera dans ce paragraphe un anneau commutatif intègre.

## **Déf**: Soient $a, b \in A$

- 1) a divise b si et ss'il existe  $c \in A$  tel que b = ca.
- 2) On note a|b

## Propriétés immédiates : Soient $a, b, c \in A$ .

- 1) 1|a, a|a, a|0
- 2)  $a|b \Leftrightarrow b \in aA \Leftrightarrow bA \subset aA$
- 3)  $(a|b|et|a|c) \Rightarrow a|(b+c)$
- 4)  $(a|b|et|b|c) \Rightarrow a|c|$
- **Déf**: a et b sont dits *associés* si et ssi a/b et b/a

## Prop: Les assertions suivantes sont équivalentes

- 1) a et b sont associés
- $2) \quad aA = bA$
- 3)  $\exists u \in U(A) / a = bu$
- 4)  $\exists v \in U(A) / b = av$

### NB:

- 1) L'association est une relation d'équivalence sur A.
- 2) Soient  $a, b \in \mathbb{Z}$ . On a

$$a\ et\ b\ sont\ associ\acute{e}s \Leftrightarrow |a|=|b|\Leftrightarrow a=\pm b$$

3) Soient  $P, Q \in \mathbb{K}[X]$ . On a

$$P \ et \ Q \ sont \ associ\acute{e}s \Leftrightarrow \exists \lambda \in \mathbb{K}^* \ , \ P = \lambda Q$$

### 10) Théorème chinois

Prop: (Théorème chinois)

Si  $m \wedge n = 1$  alors  $\mathbb{Z}/mn\mathbb{Z}$  et  $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$  sont isomorphes par l'isomorphisme naturel

$$\begin{array}{ccc} \mathbb{Z}/mn\mathbb{Z} & \to & \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \\ \overline{k} & \mapsto & (\widehat{k}, \widetilde{k}) \end{array}$$

## 11) Indicatrice d'Euler

**Déf**: (Fonction indicatrice d'Euler)

C'est l'application  $\varphi: \mathbb{N}^* \to \mathbb{N}^*$  définie par

$$\varphi(n) = card \left( \left\{ 1 \le k \le n \ / \ k \land n = 1 \right\} \right)$$

## Prop:

 $\varphi(n)$  est le nombre de générateurs du groupe  $(\mathbb{Z}/n\mathbb{Z}, +)$ , et c'est aussi le nombre d'éléments inversibles de l'anneau  $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ .

### Prop:

- 1)  $m \wedge n = 1 \implies \varphi(mn) = \varphi(m)\varphi(n)$
- 2)  $\varphi(p^r) = p^r p^{r-1}$ , où p un nombre premier et  $r \in \mathbb{N}^*$ .
- 3) Si  $n = \prod_{i=1}^{s} p_i^{r_i}$  est la décomposition de n en facteurs premiers

alors 
$$\varphi(n) = n \prod_{i=1}^{s} (1 - \frac{1}{p_i})$$

## 12) Théorème d'Euler

Prop: (Théorème d'Euler)

$$a \wedge n = 1 \implies a^{\varphi(n)} \equiv 1 [n]$$

## Corollaire:

Soit p un nombre premier. On a :

$$a \not\equiv 0 \ [p] \ \Rightarrow \ a^{p-1} \equiv 1 \ [p]$$

### III) Anneaux de polynômes à une indéterminée

 $\mathbb{K}$  sera un sous-corps de  $\mathbb{C}$ , par exemple  $\mathbb{Q}$ ,  $\mathbb{R}$  ou  $\mathbb{C}$ 

### Idéaux de l'anneau $\mathbb{K}[X]$

### Prop:

I est un idéal de  $(K[X], +, \times)$  si et ssi I est de la forme AK[X]

## Prop:

Soit I est un idéal non nul de  $(K[X], +, \times)$ .

- 1) Il existe un **unique** polynôme **unitaire**  $A_0$  tel que  $I = A_0 \mathbb{K}[X]$ .
- 2)  $A_0$  est de degré **minimal** parmi les polynômes **non nuls** de I.

## PGCD de deux polynômes

### Théorème et définition:

Soient A et B  $\in \mathbb{K}[X]$  non nuls. Il existe un unique polynôme unitaire  $D \in \mathbb{K}[X]$  tel que

$$A.\mathbb{K}[X] + B.\mathbb{K}[X] = D.\mathbb{K}[X]$$

D s'appelle le PGCD de A et B, et se note  $D = A \wedge B$ 

### NB:

Supposons  $D = A \wedge B$ . On a alors:

$$D|A, D|B, \ et \ si \ (C|A, C|B) \ alors \ C|D$$

**Prop**:  $D = A \wedge B \Rightarrow (\exists U, V \in \mathbb{K}[X] \ tels \ que \ D = AU + BV)$ 

### Déf:

A et B sont dits premiers entre eux si et ssi  $A \wedge B = 1$ .

Autrement dit:

$$A.\mathbb{K}[X] + B.\mathbb{K}[X] = \mathbb{K}[X]$$

Si  $a \neq b$  alors (X - a) et (X - b) sont premiers entre eux.

### Prop:

 $A \wedge B = 1 \iff \exists U, V \in \mathbb{K}[X] \ tels \ que \ AU + BV = 1$ 

**Prop**: (théorème de Gauss)

 $(A|BC \ et \ A \land B = 1) \Rightarrow \ A|C$ 

## Irréductibles de $\mathbb{K}[X]$

La définition d'un polynôme irréductible dans  $\mathbb{K}[X]$  est la même que celle vue au sup.

Les polynômes de degré 1 sont irréductibles dans  $\mathbb{K}[X]$ .

On a de même encore la décomposition d'un polynôme non constant en produit de facteurs irréductibles :

$$P = \alpha \prod_{i=1}^{n} P_i^{r_i}$$

où les  $P_i$  sont unitaires irréductibles et distincts deux à deux.

Et que cette décomposition est unique à ordre près.

On rappelle que les polynômes irréductibles dans  $\mathbb{C}[X]$  sont ceux de degré 1. Et les polynômes irréductibles dans  $\mathbb{R}[X]$  sont ceux de degré 1 et ceux de degré 2 à discriminent strictement négatif.

### IV) Structure d'algèbre

 $\mathbb{K}$  est un sous-corps de  $\mathbb{C}$ 

1) Algèbre

**Déf**:  $(A, +, \cdot, \times)$  est une **K-algèbre** si et ssi les conditions suivantes sont satisfaites:

- a)  $(A, +, \cdot)$  est un K-espace vectoriel.
- b)  $(A, +, \times)$  est un anneau.
- c)  $\forall x, y \in A, \ \forall \lambda, \mu \in K, \ (\lambda x) \times (\mu y) = (\lambda \mu)(x \times y)$

## Exemples usuels d'algèbres :

$$(K[X], +, \cdot, \times), (L(E), +, \cdot, \circ), (M_n(K), +, \cdot, \times), (F(X, K), +, \cdot, \times)$$

## 2) Sous-algèbre

#### Déf:

Soit  $B \subset A$ , où  $(A, +, \cdot, \times)$  est une algèbre.

B est une sous-algèbre de A si et ssi

$$1 \in B$$
  
 
$$\forall x, y \in B, \ \forall \lambda \in K, \ (\lambda x + y) \in B$$
  
 
$$\forall x, y \in B, \ x \times y \in B$$

## Prop:

Toute sous-algèbre est une algèbre (pour les lois héritées de A)

## 3) Morphisme d'algèbre

### Prop:

Soient A et B deux algèbres et  $f: A \mapsto B$  une application. f est dite morphisme d'algèbres si et ssi

$$f(1) = 1$$

$$\forall x, y \in A, \ \forall \lambda \in K, \ f(\lambda x + y) = \lambda f(x) + f(y)$$

$$\forall x, y \in A, \ f(x \times y) = f(x) \times f(y)$$

### Prop:

Soient A et B deux algèbres et  $f:A\mapsto B$  un morphisme d'algèbres.

- 1) Im(f) est une sous-algèbre de B.
- 2) Ker(f) est un  $id\acute{e}al$  de A.

