EXERCICES MP

Réduction d'endomorphismes et de matrices_

Exercice 1

Soient E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$ vérifiant $f^3 + f = 0$.

- 1) Simplifier $f^2(x)$ pour tout $x \in Im(f)$.
- 2) Justifier que Im(f) est stable par f. Notons f_1 l'endomorphisme induit par f sur Im(f)
- 3) Montrer que f_1 est un automorphisme de Im(f).
- 4) Dans cette question, on suppose que f est de rang fini. Montrer que rg(f) est un entier pair.

Exercice 2

Diagonaliser les matrices suivantes quand c'est possible :

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix}, E = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

Exercice 3

Trigonaliser les matrices suivantes :

$$A = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$

Exercice 4

Déterminer les éléments propres des endomorphismes suivants :

1) E l'espace des suites réelles bornées, et $f \in \mathcal{L}(E)$ défini par

$$\forall u \in E, \ \forall n \in \mathbb{N}, \ f(u)(n) = u_{n+1} - u_n$$

2) $E = C^{\infty}(\mathbb{R}, \mathbb{R})$ et $\phi \in \mathcal{L}(E)$ défini par :

$$\forall f \in E, \ \phi(f) = f'$$

Exercice 5

Soit $f \in \mathcal{L}(\mathbb{C}^n)$, où $n \geq 1$. Supposons que rg(f) = 1.

1) Montrer que tout vecteur non nul de Im(f) est un vecteur propre de f.

EXERCICES MP

2) Montrer que

$$f$$
 est diagonalisable $\Leftrightarrow f^2 \neq 0$

Exercice 6

L'objectif de cet exercice est de résoudre l'équation matricielle :

$$(E) X^3 + X = 0 , X \in \mathcal{M}_3(\mathbb{R})$$

Soit A une matrice non nulle solution de (E).

1) Montrer que

$$\mathcal{M}_{3,1}(\mathbb{R}) = ker(A) \oplus ker(A^2 + I_3)$$

2) Montrer que

$$\forall Y \notin ker(A), (Y, AY) \ est \ libre$$

- 3) Déterminer le polynôme minimal de A.
- 4) Montrer que dim(ker(A)) = 1
- 5) En déduire que A est semblable à la matrice $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$
- 6) Quelles sont enfin les solutions de l'équation (E)?

Exercice 7

Soit A une matrice non nulle de $\mathcal{M}_n(\mathbb{R})$, de trace non nulle. Considérons l'application f définie de $\mathcal{M}_n(\mathbb{R})$ vers lui-même par :

$$f(M) = tr(A)M - tr(M)A$$

Notons $F = \{ M \in \mathcal{M}_n(\mathbb{R}) / tr(M) = 0 \}$

- 1) Justifier que $f \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$
- 2) Montrer que A est vecteur propre de f associé à la valeur propre 0, puis que $dim(E_0(f)) = 1$
- 3) Montrer que Im(f) = F, en précisant dim(F).
- 4) Montrer F est le sous-espace propre de f associé à la valeur propre tr(A).
- 5) Déduire que f est diagonalisable.

Exercice 8

Diagonaliser les matrices suivantes :

$$A = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \\ 1 & \cdots & 1 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$

EXERCICES MP

Exercice 9

Soit
$$M = \begin{pmatrix} 0 & 1 \\ & \ddots & \\ 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$
 où $n \geq 2$.

- 1) Montrer que M est diagonalisable.
- 2) Déterminer le polynôme minimal de M.
- 3) Calculer M^p pour tout $p \in \mathbb{N}$.

Exercice 10

Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^2 + {}^tM = I_n$

1. Montrer que

$$1 \notin S_p(M) \Leftrightarrow M \ est \ inversible$$

2. Montrer que M est digonalisable.

Exercice 11

Soit E un \mathbb{R} -espace vectoriel de dimension finie et soit $u \in \mathcal{L}(E)$ qui n'est pas une homothétie.

Supposons l'existence de deux réels distincts a et b tels que :

$$(u - aI_E)(u - bI_E) = 0$$

Posons $p = \frac{1}{b-a}(u - aI_E)$ et $q = \frac{1}{a-b}(u - bI_E)$.

- 1) Calculer p+q, pq, qp, p^2 et q^2
- 2) En déduire que $E = ker(p) \oplus ker(q)$.
- 3) Justifier autrement pourquoi on a $E = ker(p) \oplus ker(q)$.
- 4) Déterminer les éléments propres de u, puis justifier que u est diagonalisable.

Exercice 12

Soit $n \in \mathbb{N}^*$ et soient $A, B \in \mathcal{M}_n(\mathbb{R})$.

Considérons l'application ϕ définie de $\mathcal{M}_n(\mathbb{R})$ vers lui-même par :

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \ \phi(M) = AM - MB$$

 α et β sont deux valeurs propres respectives de A et B.

- 1) Vérifier que $\phi \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$.
- 2) Justifier l'existence de deux matrices colonnes non nulles C et D telles

$$AC = \alpha C \ et^{\ t}BD = \beta D$$

EXERCICES MP

- 3) Calculer $\phi(C^tD)$ en fonction de C, D, α et β .
- 4) En déduire que $(\alpha \beta)$ est valeur propre de ϕ .

Exercice 13

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Soient f et g deux endomorphismes diagonalisables de E.

Montrer que si f et g commutent alors ils sont simultanément diagonalisables.

(c-à-d qu'il existe une base diagonalisant f et g.)