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Partie I

1. Si Z suit la loi de Bernoulli de paramètre p, alors Z(Ω) = {0, 1} et P (Z = 1) = p, P (Z = 0) = 1 − p. Donc
par, le théorème de transfert,

∀t ∈ R, MZ(t) = pet + 1− p.
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2. Par, le théorème de transfert, ∀t ∈ R, MX(t) =

r∑
j=1

pje
txj et donc MX est de classe C∞ sur R et

∀k ∈ N, ∀t ∈ R, M (k)
X (t) =

r∑
j=1

pjx
k
j e
txj .

D’où ∀k ∈ N, M (k)
X (0) = E(Xk).

3. (a) ϕX est bien définie sur R∗ car MX est strictement positive sur R puisque :
— ∀t ∈ R, ∀j ∈ J1 , rK, etxj > 0

— ∃i ∈ J1 , rK, pi > 0 puisque
r∑
j=1

pj = 1

Soit t ∈ R∗.

MX(t) =

r∑
j=1

pje
txj =

r∑
j=1

pj(1 + xjt+
x2j
2
t2 + ot→0(t)) = 1 + E(X)t+

E(X2)

2
t2 + ot→0(t2)

Donc ϕX(t) = E(X) +
V (X)

2
t+ ot→0(t). D’où lim

t→0
ϕX(t) = E(X). Donc ϕX est prolongeable par continuité

en 0
(b) D’après la question précédente ϕX admet un développement limité d’ordre 1 en 0, donc elle est dérivable en

0 et ϕ′X(0) =
V (X)

2
.

(c) i. Soit u ≤ 0. D’après la formule de Taylor-Lagrange à l’ordre 3, il existe c ∈]u, 0[ tel que :

eu − 1− u− 1

2
u2 =

1

3!
u3ec ≤ 0 car u ≤ 0.

D’où ∀u ≤ 0, eu ≤ 1 + u+
1

2
u2.

ii. Soit t ≥ 0. On a, pour tout j ∈ J1 , rK, txj ≤ 0, donc, d’après la question précédente,

MX(t) ≤
r∑
j=1

pj

(
1 + txj +

1

2
x2j t

2

)
= 1 + E(X)t+

t2

2
V (X)

Et comme ∀x > −1, ln(1 + x) ≤ x, alors

ϕX(t) ≤ E(X) +
t

2
V (X) ≤ E(X) +

t

2
E(X2) car V (X) = E(X2)− E2(X) ≤ E(X2).



(d) i. Considèrons l’endomorphisme φ de C∞(R) définie par : ∀f ∈ C∞(R), φ(f) = f ′.
On a, pour tout i ∈ J1 , rK, fi n’est pas nulle et φ(fi) = xifi, donc fi est un vecteur propre de φ associé
à la valeur propre xi. Et comme les xi sont deux à deux distinctes, alors (f1, . . . , fr) est libre.

ii. Dans cette question on n’a oublié de dire que X(Ω) = Y (Ω) = {x1, . . . , xr}.
=⇒ C’est évident.
⇐= On pose, pour tout j ∈ J1 , rK, pj = P (X = xj) et qj = P (Y = xj).

On a ∀t ∈ R∗, ϕX(t) = ϕY (t), donc ∀t ∈ R∗, MX(t) = MY (t), c-à-d
r∑

k=1

(pk − qk)fk = 0. Et comme la

famille (f1, . . . , fr) est libre, alors j ∈ J1 , rK, pj = qj. D’où ont la même loi.
(e) Puisque X et Y sont indépendantes, alors ∀t ∈ R, etX et etY le sont aussi. Donc E

(
et(X+Y )

)
= E

(
etXetY

)
=

E
(
etX
)
E
(
etY
)
. D’où ϕX+Y = ϕX + ϕY

(f) Le résultat de la question précédente se généralise, par récurrence, à un nombre fini de variables aléatoires
discrètes finies mutuallement indépendantes.
Comme X suit la loi binomiale de paramètres s et p, alors on peut voir X comme somme de s variables
aléatoires X1, . . . , Xs qui ont même loi de Bernoulli de paramètre p.

Donc, d’après la question précédente, ϕX =

s∑
j=1

ϕXj = sϕX1 . Donc

∀t ∈ R, MX(t) = (MX1)
s

= (pet + 1− p)s.

(g)

X et −X sont symétriques ⇐⇒ X et −X ont même loi
⇐⇒ ϕX = ϕ−X (d’après I.3.d.ii)

⇐⇒ ∀t ∈ R∗, ϕX(t) =
1

t
ln
(
E
(
e−tX

))
et ϕX(0) = 0

⇐⇒ ∀t ∈ R∗, ϕX(−t) = −1

t
ln
(
E
(
etX
))

et ϕX(0) = 0

⇐⇒ ∀t ∈ R, ϕX(t) = −ϕX(−t)
⇐⇒ ϕX est impaire

4. (a) Soit (n, t) ∈ N∗ × R∗.
MS∗n

(t) = E
(
etS
∗
n

)
= e−t

E(Sn)
σ(Sn) E

(
et

Sn
σ(Sn)

)
Or

E(Sn) = E

(
n∑
k=1

Xk

)
=

n∑
k=1

E(Xk) = nm

et puisque les Xk sont mutuellement indépendantes, alors :

V (Sn) = V

(
n∑
k=1

Xk

)
=

n∑
k=1

V (Xk) = nσ2.

Donc MS∗n
(t) = e−t

m
√
n

σ E
(
e
t Sn
σ
√
n

)
. D’où

ϕS∗n(t) = −m
√
n

σ
+ ϕ Sn

σ
√
n

(t)

Et puisque les Xk sont mutuellement indépendantes , alors les
Xk

σ
√
n

le sont aussi et, d’après I.3.e, on a :

ϕ Sn
σ
√
n

(t) =

n∑
k=1

ϕ Xk
σ
√
n

(t) = nϕ X
σ
√
n

(t)

Or,

ϕ X
σ
√
n

(t) =
1

σ
√
n

1
t

σ
√
n

ln
(
E
(
e

t
σ
√
nX

))
=

1

σ
√
n
ϕX

(
t

σ
√
n

)



D’où

ϕS∗n(t) = −m
√
n

σ
+

√
n

σ
ϕX

(
t

σ
√
n

)
.

(b) Quand n→ +∞, ϕX
(

t

σ
√
n

)
= m+

tσ

2
√
n

+ o

(
1√
n

)
.

Donc
ϕS∗n(t) =

t

2
+ o(1) −−−−−→

n→+∞

t

2
.

Partie II

1. (a) Soit x ∈ R. Comme b ∈]a, c[, alors ∃λ ∈]0, 1[, b = λa+ (1− λ)c (λ =
c− b
c− a

).

Or exp est convexe, donc ebx ≤ λeax + (1− λ)ecx ≤ eax + ecx.

(b) On pose X(Ω) = {xn | n ∈ N} et ∀n ∈ N, P (X = xn) = pn. On a ∀t ∈ IX , MX(t) =

+∞∑
n=0

pne
txn .

— Comme
+∞∑
n=0

pn = 1, alors 0 ∈ IX .

— Soit a, c ∈ IX tel que a < c et b ∈]a, c[. Alors MX(a) et MX(c) existent. Or, d’après la question
précédente, ∀n ∈ N, ebxn ≤≤ eaxn + ecxn , donc MX(b) existe et par suite b ∈ IX

Donc IX est un intervalle de R contenant 0.

2. On a Y (Ω) = N, ∀n ∈ N, P (Y = n) = e−λ
λn

n!
. Soit t ∈ R,on pose an(t) = e−λ

(etλ)
n

n!
> 0.

Comme
an+1(t)

an(t)
=

λet

n+ 1
−−−−−→
n→+∞

0 < 1, donc, d’après la règle de D’Alembert MY (t) existe pour tout t ∈ R et

MY (t) =

+∞∑
n=0

e−λ
(etλ)

n

n!
= eλ(e

t−1)

3. (a) On a, pour tout n ∈ N, un est de classe C∞ sur ]− α, α[ et on a

∀(k, n, t) ∈ N× N×]− α, α[, u(k)n = P (X = xn)xkne
txn

et Donc
∀(k, n, t) ∈ N× N×]− α, α[,

∣∣∣u(k)n

∣∣∣ ≤ P (X = xn)|xn|keα|xn|

car ∀(n, t) ∈ N×]− α, α[, |txn| ≤ α|xn|.
(b) Soit k ∈ N. D’après la question précédente,

∀(n, t) ∈ N×]− α, α[, |u(k)n (t) ≤ |xn|ke−δ|xn|P (X = xn)eρ|xn| où δ = ρ− α > 0

Or si k ≥ 1, la fonction t 7→ tke−δt admet sur [0,+∞[ un maximum absolu en
δ

k
> 0, qu’on le note Nk > 0.

Sinon, un(t) ≤ P (X = xn)eρ|xn|. Donc Mk = max(1, Nk) convient.
(c) On a :

—
∑
n≥0

un converge simplement sur ]− a, a[.

— ∀n ∈ N, un est de classe C∞ sur ]− a, a[.
— D’après la question précédente, ∀α > 0 tel que [−α, α] ⊂]− a, a[ et ρ ∈]α, a[,

∀k ∈ N, ∃Mk > 0, ∀(n, t) ∈ N×]− α, α[,
∣∣∣u(k)n

∣∣∣ ≤MkP (X = xn)keρ|xn|

Or
∑
n≥0

P (X = xn)keρ|xn| est convergente car ρ ∈ IX . Donc ∀k ∈ N,
∑
n≥0

u(k)n converge normalement sur

[−α, α]
Donc MX est de classe C∞ sur ]− a, a[ et

∀k ∈ N, ∀t ∈]− a, a[, M
(k)
X (t) =

+∞∑
n=0

P (X = xn)xkne
txn

En particulier M (k)
X (0) =

+∞∑
n=0

P (X = xn)xkn. D’où E(Xk) existe et M (k)
X (0) = E(Xk).



Partie III

1. Comme dans la question I.3.e.
2. (a) Le résultat est trivialement vérifié pour t = 0. Donc il suffit de le démontrer par récurrence sur k ∈ N∗ pour

tout t > 0.
— Pour k = 1, puisque la fonction t 7→ est est convexe sur [0,+∞[ donc st ≤ 1 + st ≤ est.
— Soit k ≥ 1. Supposons que la propriété est vraie pour k et montrons la pour k + 1.
— Considérons la fonction φk+1 définie sur [0,+∞[ par : φk+1(t) = (k + 1)!est − (st)k+1. φk+1 est classe
C∞ sur [0,+∞[ et ∀t ≥ 0, φ′k+1(t) = (k+ 1)s(k!est− (st)k ≥ 0 (d’après l’hypothèse de récurrence.) Donc
φk+1 est croissante sur [0,+∞[. D’où ∀t ≥ 0, φ′k+1(t) ≥ φ′k+1(0) = (k + 1)! c-à-d (k + 1)!est ≥ (st)k+1.

Et la récurrence est établie.

(b) Soit k ∈ N∗ et f la fonction de densité de X. On a ∀t ∈ R, |t|k ≤ k!

sk
es|t| et

∫ +∞

−∞
es|t|f(t)dt < +∞ car

s ∈ IX . Donc E(|X|k) est fini.
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(c) On a pour tout t ∈]− s, s[ :

MX(t) =

∫ +∞

−∞
etuf(u)du =

∫ +∞

−∞

(
+∞∑
n=0

(tu)n

n!
f(u)

)
du.

On pose, pour tout n ∈ N, fn : u 7→ (tu)n

n!
f(u)

— ∀n ∈ N, fn est continue par morceaux intégrable sur R (d’après la question III.2.a)
—
∑
n≥0

fn converge simplement sur R vers la fonction g : u 7→ etuf(u) qui est continue par morceaux et

intégrable sur R car t ∈]− s, s[⊂ IX

— ∀n ∈ N,
∫ +∞

−∞
|fn(u)|du =

|t|n

n!

∫ +∞

−∞
|u|nf(u)du =

E(|tX|n)

n!
(∀t ∈]− s, s[, E(|tX|) existe puisque : [−s, s] ⊂ IX avec s > 0, et exp(a|X|) < exp(sX) + exp(−sX) on
en déduit que E(exp(a|X|)) existe, et donc E(exp |tX|) existe pour tout |t| ≤ s.)

—
∑
n≥0

E(|tX|n

n!
converge vers exp(E(|tX|).

Donc, d’près le théorème d’intégration terme à terme,

∀t ∈]− s, s[, MX(t) =

+∞∑
n=0

∫ +∞

−∞
fn(u)du =

+∞∑
n=0

(∫ +∞

−∞
unf(u)du

)
tn

n!
=

+∞∑
n=0

E(Xn)

n!
tn.

(d) D’après la question précédente MX est développable en série entière en 0 et donc ∀k ∈ N, M (k)
X (0) = E(Xk).

FIN

4. Puisque Y suit la loi de Poisson de paramètre λ, alors MY est définie sur R et ∀t ∈ R, MY (t) = eλ(e
t−1). Donc,

d’après la question précédente, E(Y) et E(Y 2) existent et E(Y ) = M ′Y (0) = λ et E(Y 2) = M ′′Y (0) = λ(1 + λ)
et donc

V (Y ) = E(Y 2)− (E(Y ))2 = λ.










