ÉCOLE DES PONTS PARISTECH, SUPAÉRO (ISAE), ENSTA PARISTECH, TÉLÉCOM PARISTECH, MINES PARISTECH, MINES DE SAINT-ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (FILIÈRE MP), ÉCOLE POLYTECHNIQUE (FILIÈRE TSI).

CONCOURS 2015

PREMIÈRE ÉPREUVE DE MATHÉMATIQUES

MATHÉMATIQUES I - MP.

Filière MP

Extrait

B. Théorème d'approximation de Weierstrass

Soit n un entier strictement positif, $x \in [0,1]$ et $f:[0,1] \to \mathbb{R}$ une fonction continue. On note $X_1, X_2, ..., X_n$ des variables aléatoires mutuellement indépendantes et distribuées selon la loi de Bernoulli de paramètre x. On note également $S_n = X_1 + X_2 + ... + X_n$, $Z_n = \frac{S_n}{n}$ et $B_n(f)(x) = E(f(Z_n))$.

- 5) Rappeler, sans démonstration, la loi de S_n . En déduire, avec démonstration, les valeurs de l'espérance et de la variance de S_n en fonction de n et de x.
- 6) En utilisant l'inégalité de Bienaymé-Tchebychev, montrer que pour tout $\alpha > 0$:

$$\sum_{\substack{0 \le k \le n \\ |\frac{k}{n} - x| \ge \alpha}} \binom{n}{k} x^k (1 - x)^{n - k} \le \frac{1}{4n\alpha^2}$$

7) Montrer que:

$$B_n(f)(x) - f(x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} \left(f\left(\frac{k}{n}\right) - f(x) \right)$$

Fin extrait