EXERCICES MPSI

Probabiltés - Partie 2

Exercice 1:

Soit X une variable aléatoire réelle à valeurs dans [0, n] telle qu'il existe $a \in \mathbb{R}$ vérifiant :

$$\forall k \in [0, n], \ P(X = k) = a \ C_n^k$$

- 1) Que vaut a?
- 2) Calculer E(X) et V(X).

Exercice 2:

Soit X une variable aléatoire suivant une loi binomiale de taille n et de paramètre p; où $p \in]0,1[$.

Calculer l'espérance de la variable aléatoire $Y = \frac{1}{X+1}$.

Exercice 3:

On considère un dé cubique, de faces numérotées de 1 à 6.

On suppose que celui-ci est truqué, de sorte que la probabilité d'obtenir chaque face \mathbf{k} est proportionnelle à \mathbf{k} .

Soit X la variable aléatoire associée au lancer du dé (c-à-d donnant le numéro affiché) .

- 1) Déterminer la loi de X, puis calculer son espérance.
- 2) Considérons la variable aléatoire $Y = \frac{1}{X}$. Déterminer la loi de Y et calculer son espérance E(Y).

Exercice 4:

Soient $a_1, ..., a_n$ des réels distincts deux à deux, où $n \in \mathbb{N}^*$.

Soient X et Y deux variables aléatoires réelles indépendantes telles que

$$X(\Omega) = Y(\Omega) = \{a_1, ..., a_n\}$$

 $\forall i \in [1, n], \ P(X = a_i) = P(Y = a_i) = p_i$

- 1) Que vaut la somme $\sum_{i=1}^{n} p_i$?
- 2) Montrer que

$$P(X \neq Y) = \sum_{i=1}^{n} p_i (1 - p_i)$$

EXERCICES MPSI

Exercice 5:

Soient X une variable aléatoire réelle, et $g: \mathbb{R}^+ \to \mathbb{R}^+$ une application strictement croissante.

Montrer que

$$\forall a \succ 0, \ P(|X| \succeq a) \preceq \frac{E(g(|X|))}{g(a)}$$

Indice: Vous pouvez utiliser l'inégalité de Markov.

Exercice 6:

Soit X une variable aléatoire suivant une loi binomiale de paramètres \mathbf{n} , \mathbf{p} . Montrer que

$$\forall \lambda, \varepsilon \succ 0, \ P(X - np \ge n\varepsilon) \le E(exp(\lambda(X - np - n\varepsilon)))$$

Exercice 7:

Soient X et Y deux variables aléatoires **indépendantes**, suivant une loi binomiale de paramètres \mathbf{n} , \mathbf{p} et \mathbf{m} , \mathbf{p} respectivement.

Considérons la variable aléatoire somme S = X + Y.

1) Montrer que

$$\forall l \in [0, m+n], \ \sum_{k=0}^{l} \binom{n}{k} \binom{m}{l-k} = \binom{m+n}{l}$$

Indice : Vous pouvez considérer le coefficient en X^l dans l'égalité polynomiale $(1+X)^{m+n}=(1+X)^m(1+X)^n$.

2) En déduire que la variable aléatoire S suit une loi binomiale de paramètres $\mathbf{m}+\mathbf{n}$ et \mathbf{p} .

Exercice 8:

Soient (Ω, T, P) un espace probabilisé fini, et X une variable aléatoire réelle positive.

Noter que $X(\Omega)$ est bien fini.

Montrer que

$$E(X) = 0 \Leftrightarrow (X = 0 \text{ presque } \hat{\text{surement}})$$

Rappel: $(X = 0 \text{ presque } \hat{surement})$ veut dire que P(X = 0) = 1, ou encore $P(X \neq 0) = 0$.