Extrait du Problème N°1

Partie II

Une démonstration probabiliste du théorème de Stone-Weierstrass

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue et $n\in\mathbb{N}^*$.

- 1. Soit S_n une variable aléatoire suivant une loi binomiale de paramètres n et x, $x \in [0,1]$, on pose, pour tout $n \in \mathbb{N}^*$, $X_n = \frac{S_n}{r}$.
 - (a) Déterminer $E(X_n)$ et $V(X_n)$ respectivement l'espérance et la variance de X_n .
- (b) Justifier que, pour tout $\delta>0$, $P(|X_n-x|\geq\delta)\leq \frac{1}{4n\delta^2}$. 2. On introduit la variable aléatoire $Y_n=f(X_n)$ et on pose pour tout $x\in[0,1]$, $C_n(f)(x)=E(Y_n)$. Pour la suite de cette question, on se donne un réel $\varepsilon > 0$.
 - (a) Vérifier que $x \mapsto C_n(f)(x)$ est une fonction polynomiale définie sur [0,1].
 - (b) D'après le théorème de Heine, comme f est continue sur [0,1], alors il existe $\beta>0$ tel que, pour tout $(x_1, x_2) \in [0, 1] \times [0, 1], |x_1 - x_2| \le \beta \Rightarrow |f(x_1) - f(x_2)| \le \frac{\varepsilon}{2}$. (On ne vous demande pas de redémontrer ce résultat).

i. Montrer que
$$\left|\sum_{\left|\frac{k}{n}-x\right| \leq \beta} \left(f\left(\frac{k}{n}\right) - f(x)\right) P\left(X_n = \frac{k}{n}\right)\right| \leq \frac{\varepsilon}{2}$$
 ii. Montrer que
$$\left|\sum_{\left|\frac{k}{n}-x\right| > \beta} \left(f\left(\frac{k}{n}\right) - f(x)\right) P\left(X_n = \frac{k}{n}\right)\right| \leq \frac{M}{2n\beta^2}, \text{ avec } M = \sup_{t \in [0,1]} |f(t)|.$$

(c) En déduire que la suite $(C_n(f))_{n>1}$ converge uniformément vers f sur [0,1].