Tous les exercices sont solutionnés

EXERCICES MPSI

[ Espaces préhilbertiens réels ]

Exercice 1

1) Soit n € N. Considérons 'application ® définie par :

VP,Q € R,[X],®(P,Q) = Y P(k)Q(k)
k=0

Montrer que ® est un produit scalaire sur R,,[X].
2) E=C([-1,1],R). Considérons I’application ¥ définie par :

1
Vi€ B U(f.g) = / a1~ i

Montrer que ¥ est un produit scalaire sur E.

Exercice 2

R* est muni de sa structure euclidienne canonique.

Notons e; = (1,0,1,0),e2 = (1,—1,1,—1) et F = vect(e1, e2)
1) Déterminer une base orthonormale de F.

2) Déterminer d(z, F), on x = (1,1,1,1)

Exercice 3

On considére I'application définie sur M, (R)? par :
(A|B) = tr(*A.B)
1) Montrer que cette application est un produit scalaire pour lequel la base

canonique est orthonormée. On note ||.|| la norme associée.

2) Montrer que
VA € My (R), [tr(A)] < v/nl|Al

Exercice 4

Soit A € M,(R).
1) Montrer que ker(A) = ker(*A.A)
2) En déduire que :
a) rg(A) =rg(*tA.A) = rg(AlA)
b) Im(A) = Im(A.tA)
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EXERCICES MPSI

Exercice 5

E = R? est muni du produit scalaire usuel. Q est le plan d’équation carté-
sienne
Q: z—y+2=0
1) Soit (z,y,2) € R3.
Déterminer Py(z,y, z) ; la projection orthogonale de (z,y, z) sur Q.
2) Calculer d(A,Q), ou A = (—1,2,1).

Exercice 6

(E, < |- >) un espace euclidien.

1) a un vecteur non nul de E et D = vect(a).
Expliciter Pp(z), la projection orthogonale de z sur D.

2) Soit H I'hyperplan orthogonal au vecteur ; c-a-d H = (vect(a))*
Expliciter Py (z).

3) E =R3 est muni du produit scalaire usuel.
Q est le plan d’équation cartésienne

Q:xz—y+z=0

Soit (z,y, z) € R3.
Déterminer Pg(x,y, 2); la projection orthogonale de (x,y, z) sur Q.
Comparer avec le résultat trouvé dans : Exercice 5. 1).

Exercice 7

M5(R) est muni du prodult scalaire : (A|B) = tr(*A.B)
H={M € My(R)/tr(M)=0} . F = { b /(a,b) € Rz} .

a
11
(1)
1) a) Justifier que H est un hyperplan de Ms(R)
b) Déterminer d(A, H).
2) a) Justifier que F est un sous-espace vectoriel de Ms(R) et en déterminer
une base.

b) Déterminer une base de F*-
c¢) Déterminer la projection orthogonale de A sur F*
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Exercice 1

1) Soit n € N. Considérons 'application ® définie par :

VP, Q € R,[X], ® Z P(k
Montrer que ® est un produit scalaire sur R, [X].
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2) E=C([-1,1],R). Considérons "application ¥ définie par :
Vf.g € E,¥(f.9) /f (1)

Montrer que ¥ est un produit scalaire sur E.
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Exercice 2

R* est muni de sa structure euclidienne canonique.
Notons e; = (1,0,1,0),e2 = (1,—1,1,—1) et F = vect(ey, e3)

1) Déterminer une base orthonormale de F.
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R* est muni de sa structure euclidienne canonique.
Notons e; = (1,0,1,0),e2 = (1,—1,1,—1) et F = vect(ey,e2)
1) Déterminer une base orthonormale de F.

2) Déterminer d(x, F'), ou z = (1,1,1,1)
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Fin Exercice 2
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Exercice 3
On considére I'application définie sur M,,(R)? par :

(A|B) = tr(*A.B)

1) Montrer que cette application est un produit scalaire pour lequel la base
canonique est orthonormée. On note ||.|| la norme associée.
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On considére I'application définie sur M, (R)? par :
(A|B) = tr(*A.B)

1) Montrer que cette application est un produit scalaire pour lequel la base
canonique est orthonormée. On note ||.|| la norme associée.
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On considére I'application définie sur M, (R)? par :
(A|B) = tr(*A.B)

1) Montrer que cette application est un produit scalaire pour lequel la base
canonique est orthonormée. On note ||.|| la norme associée.

2) Montrer que
VA € Mp(R), tr(A)| < Vn||A]
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Fin Exercice 3
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Exercice 4
Soit A € M, (R).

1) Montrer que ker(A) = ker(*A.A)
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Soit A € M, (R).
1) Montrer que ker(A) = ker(*A.A)
2) En déduire que :

a) rg(4) =rg(*A.4) =rg(A.'A)

2 &) ~) h@(/ﬂ:ﬁj(@%) ?

(One et A) b (A M

—> i (Be B _dim (e AA)

%l dlﬁ7>(-§ A theaime da han madCie | joma
n = vonllec £) 45 (#
o dum (b AA]) w5 A

Soit A € M, (R).
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Soit A € M, (R).
1) Montrer que ker(A) = ker(*A.A)
2) En déduire que :
a) rg(A) =rg(*tA.A) =rg(AlA)
b) Im(A) = Im(A.lA)
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Fin Exercice 4
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Exercice 5
E = R3 est muni du produit scalaire usuel. Q est le plan d’équation carté-
sienne

Q: z—y+2z=0

1) Soit (x,y,2) € R,
Déterminer Pg(z,y, z) ; la projection orthogonale de (z,y, z) sur Q.
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E = R3 est muni du produit scalaire usuel. Q est le plan d’équation carté-
sienne
2: z—y+z=10

1) Soit (z,y,2) € R3.
Déterminer Pg(x,y, 2); la projection orthogonale de (z,y, z) sur Q.

2) Calculer d(A,Q), ou A =(—1,2,1).
d(4,Q) = A~ P (A

ho(-a2,1).
/th Q,]Kf;/t!g 70) ’\?’VU‘.

fo (g 2)=5 (’Z’“"?’“%/”’”’Z%%/ ”“‘a”*"%)

Fin Exercice 5
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Exercice 6

(E, < -|- >) un espace euclidien.

1) a un vecteur non nul de E et D = vect(a).
Expliciter Pp(z), la projection orthogonale de x sur D.
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(E, < +|- >) un espace euclidien.

1) a un vecteur non nul de E et D = vect(a).
Expliciter Pp(x), la projection orthogonale de = sur D.

2) Soit H I’hyperplan orthogonal au vecteur ; c-a-d H = (vect(a))™*
Expliciter Py (x).
1
(On oo H- (w&{d)

1
[Oe E o VecHa @(v{qﬁ(a))

=H

04/9/5 P(’l) F F il =
4 H
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(F, < |- >) un espace euclidien.

1) a un vecteur non nul de E et D = vect(a).
Expliciter Pp(x), la projection orthogonale de z sur D.

2) Soit H I'hyperplan orthogonal au vecteur; c-a-d H = (vect(a))*

Expliciter Py(x).

3) E =R? est muni du produit scalaire usuel.
Q est le plan d’équation cartésienne

Q: z—y+2=0
Soit (z,y,2) € R3.

Déterminer Pg(z,y, 2) ; la projection orthogonale de (z,y, 2) sur Q.
Comparer avec le résultat trouvé dans : Exercice 5. 1).
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Fin Exercice 6
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Exercice 7
M>5(R) est muni du produit scalaire : (A|B) = tr(*A.B)

H={M € MyR)/tr(M) =0} . F = Z)/(a,b)eRQ} .

~b
11
=(11)

1) a) Justifier que H est un hyperplan de Ms(R)
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M>5(R) est muni du produit scalaire : (A|B) = tr(*A.B)

H={M e My(R)/tr(M) =0} . F=<( ° 2)/(a,b)€R2}.

1 1
(1)
1) a) Justifier que H est un hyperplan de M3(RR)
b) Déterminer d(A, H).

i) =NA-p@ll P =2
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<—.;>7Lr[£1_;/‘4) =Q
& (L1M) =0

& Me (vfc #(@))L

i H - (v«dﬂ}))i

Bt e HT Ve (T3

S & e (hr) = H

L
:1:2,é \[KC{'(I‘?) :/—-/
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M>(R) est muni du produit scalaire : (A|B) = tr(*A.B)
H={M € Ma(R)/tr(M) =0} . F = {( a b )/(a,b) €R2} :

—b a
1 1
a=(11)

1) a) Justifier que H est un hyperplan de M>(R)
b) Déterminer d(A, H).

2) a) Justifier que F est un sous-espace vectoriel de Ms(R) et en déterminer
une base.

(4 7)) Jeker)
altoyeb(s D) e

Eever (£,,7) e T=(% %)

Vi E ot on A D PR / (1;,\—/-) .
Joll Genicatrice

(I’Uj) e Abge car L, T Dk pes (mcalres

/

arn (fzrj) (4 une g de Fojeg Ji(,oi t) :
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M>(R) est muni du produit scalaire : (A|B) = tr(*A.B)

H:{MeMﬂmmmﬂzquz{(fgZ)ﬂ%MEW}.
1 1

=(i1)

1) a) Justifier que H est un hyperplan de Ms(R)

b) Déterminer d(A, H).

2) a) Justifier que F est un sous-espace vectoriel de My (R) et en déterminer
une base.

b) Déterminer une base de F-

SM/%s(fé)éMﬂﬂy

Mé/:—(- %:> {(l"‘l Zy) =0 [CQ/(IX(J?LCL((JA -

(r117) - )
jLac+ofco 7:(—01 o)
&
lo —C =0
> 0 Mo (7

< M= (CL f@)

fe) (@) i
&M -a (i _1)+b( 4 o>
o N~

L}HO{-:K k}l/l«m[(/l._

™ ¢ ,C—’L => 77 ¢ \/(c4-(l<, L)

L o o 1
@/%\ = ,—_—\/(c/'(f/\,l,) com K= /{o —1)& L.:(i 0)‘

(K]L‘) {34' L7W (me IG"\H E:{( F:j—
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M>(R) est muni du produit scalaire : (A|B) = tr(*A.B)

H={M € MyR)/tr(M) =0} . F = {( _ab Z )/(a,b) ERQ} :
1 1

(i)

1) a) Justifier que H est un hyperplan de Ms(R)

b) Déterminer d(A, H).
2) a) Justifier que F est un sous-espace vectoriel de My(R) et en déterminer
une base.
b) Déterminer une base de F*

¢) Déterminer la projection orthogonale de A sur F+

P (A) =¢

Plusieurs manieres de procéder, voyons par exemple:
Re decmin KB EIR fely g 6;.1_.{’4)*: A +p L

(K\L) ¢ b (e lonn e FLj . K:(/{o _Oi)z!e | - C’)L j)
(Ina ;

L ((4-P w[k)=2
(4__/;@)@ (£*) @% -

(M ACIDES

/J 4:>
7 J/ (A1L) _ ( 2 =
7 o =

=R

0 = & (KIK)+B(LIK)
<:> = e
= d(&%fﬁ(&la
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L

LAA =9
-

(4) = 0“<+FL dugist o fu.

Pum-L (1)

Fin Exercice 7

Pr. ELAMIRI www.iamateacher.org




