Ce qui est marqué on jaune est corrigé à prisont. Je coorigerai le reste après.

EXERCICES MP-MP*

STRUCTURES ALGÉBRIQUES LES GROUPES

Exercice 1:

Soit (G, .) un groupe.

Définition : On appelle **centre** de G, qu'on note $\mathbf{Z}(\mathbf{G})$, la partie de G définie par

$$Z(G) = \{ x \in G \mid \forall g \in G, \ gx = xg \}$$

- 1) Montrer que Z(G) est un sous-groupe de G.
- 2) Soit n > 1. Déterminer le centre de $GL_n(\mathbb{K})$.

Exercice 2:

Quels sont les sous-groupes finis de \mathbb{C}^* ?

Exercice 3:

Soient (G, .) un groupe multiplicatif et L un sous-groupe, avec $L \neq G$. Déterminer $\langle \overline{L} \rangle$, le sous-groupe engendré par le complémentaire de L.

Exercice 4:

Soit (G, .) un groupe multiplicatif fini, de neutre e et de cardinal n.

Soit H un sous-groupe de G. Notons card(H) = p.

Considérons la relation binaire \mathcal{R} définie sur G par

$$x\mathcal{R}y \Leftrightarrow xy^{-1} \in H$$

- 1) Montrer qu'il s'agit d'une relation d'équivalence sur G.
- 2) Soient $g \in G$ et \overline{g} sa classe d'équivalence.
 - i) Expliciter \overline{g} .
 - ii) Montrer que \overline{g} est équipotent à H.
- 3) Déduire que p|n.

C'est le théorème de Lagrange.

4) En déduire le résultat du cours :

$$\forall g \in G, \ g^n = e$$

Exercice 5:

Soit (G, .) un groupe fini, de neutre e et de cardinal n, vérifiant que

$$\forall g \in G, \ g^2 = e$$

EXERCICES MP-MP*

- 1) Montrer que G est commutatif.
- 2) Soient H un sous-groupe de G et $x \notin H$. Montrer que $K = H \cup xH$ est un sous-groupe de G et que $card(K) = 2 \times card(H)$.

3) En déduire que \mathbf{n} est une puissance de 2.

Exercice 6:

Soit H un sous-groupe non nul de \mathbb{R} .

Notons $H^+ = H \cap]0, +\infty[$ et $\alpha = inf(H^+).$

- 1. Justifier d'abord l'existence de α .
- 2. Supposons ici que $\alpha > 0$. Montrer que $\alpha \in H^+$ et que $H = \alpha \mathbb{Z}$; où $\alpha \mathbb{Z} = \{\alpha m \mid m \in \mathbb{Z}\}$.
- 3. Supposons maintenant que $\alpha = 0$. On se propose de montrer que H est <u>dense</u> dans \mathbb{R} . Soient alors x < y deux réels.
 - i) Montrer que

$$\exists h \in H, \ 0 < h < y - x$$

ii) Conclure.

Exercice 7:

Soient (G,.) un groupe fini et ψ un morphisme de G vers le groupe $\mathbb{C}^*.$

Supposons que ψ n'est pas une application constante.

Montrer que
$$\sum_{g \in G} \psi(g) = 0$$
.

STRUCTURES ALGÉBRIQUES LES GROUPES

Exercice 1:

Soit (G, .) un groupe.

Définition : On appelle **centre** de G, qu'on note $\mathbf{Z}(\mathbf{G})$, la partie de G définie par

$$Z(G) = \{ x \in G \mid \forall g \in G, \ gx = xg \}$$

1) Montrer que Z(G) est un sous-groupe de G.

Solution

Soit
$$\pi \in G$$
. On $n : \pi \in Z(G) \Leftrightarrow (\forall g \in G, g\pi = \pi g)$

Montrons Que $Z(G)$ (if on sons-pronge $\operatorname{de}(G, \cdot)$.

i) On $\pi \in Z(G)$ car $(\forall g \in G, ge = eg = e)$

ii) Soi ant $\chi_{i}y \in Z(G)$.

Minkons $\chi_{i}y \in Z(G)$.

Soit alors $g \in G$.

It slaght de mondrer Que $g(\chi y^{-1}) = (\eta y^{-1})g$

On $\pi : g(\chi y^{-1}) = g\chi y^{-1}$
 $= \chi_{i}g y^{-1} \qquad (g\chi = \chi_{i}g)$

of on $\pi_{i}g \in G$.

 $g(\chi_{i}g) = g\chi g^{-1}$
 $= \chi_{i}g g^{-1} \qquad (g\chi = \chi_{i}g)$
 $= \chi_{i}g g^{-1} \qquad (g\chi = \chi_{i}g)$

$$\Rightarrow y^{-1}g = gy^{-1}$$

Don;

$$g(xy^{-1}) = xy^{-1}g$$
$$= (xy^{-1})g$$
$$CQFD$$

Unfin: Z(G) est un sons-prompe de (G,-)

Soit (G, .) un groupe.

Définition : On appelle **centre** de G, qu'on note $\mathbf{Z}(\mathbf{G})$, la partie de G définie par

$$Z(G) = \{ x \in G \mid \forall g \in G, \ gx = xg \}$$

- 1) Montrer que Z(G) est un sous-groupe de G.
- 2) Soit n > 1. Déterminer le centre de $GL_n(\mathbb{K})$.

Solution

$$\Rightarrow \forall i,j, \sum_{A_{i}} A_{kl} \stackrel{S_{li}}{=} E_{ij} = \sum_{A_{i}l} A_{kl} \stackrel{S_{i}}{=} E_{il}$$

$$\Rightarrow \forall i,j \in [1,n], \sum_{A_{i}l} A_{ki} \stackrel{E_{i}j}{=} E_{il}$$

$$\Rightarrow \forall i,j \in [1,n], \sum_{A_{i}l} A_{ki} \stackrel{E_{i}j}{=} E_{il}$$

$$\Rightarrow \forall i,j \in [1,n], \sum_{A_{i}l} A_{ki} \stackrel{E_{i}j}{=} E_{il}$$

$$\Rightarrow \forall i,j \in [1,n], A_{ii} \stackrel{E_{i}j}{=} A_{ki} \stackrel{E_{i}j}{=} A_{jk} \stackrel{E_{i}l}{=} E_{il}$$

$$\Rightarrow \forall i,j \in [1,n], A_{ii} \stackrel{E_{i}j}{=} A_{ki} \stackrel{E_{i}j}{=} A_{jk} \stackrel{E_{i}l}{=} E_{il}$$

$$\Rightarrow \forall i,j \in [1,n], A_{ii} \stackrel{E_{i}j}{=} A_{ki} \stackrel{E_{i}j}{=} A_{jk} \stackrel{E_{i}l}{=} E_{il}$$

$$\Rightarrow \forall i,j \in [1,n], A_{ii} \stackrel{E_{i}j}{=} A_{ki} \stackrel{E_{i}j}{=} A_{jk} \stackrel{E_{i}l}{=} E_{il}$$

$$\Rightarrow \forall i,j \in [1,n], A_{ii} \stackrel{E_{i}j}{=} A_{ki} \stackrel{E_{i}j}{=} A_{jk} \stackrel{E_{i}l}{=} E_{il}$$

$$\Rightarrow \forall i,j \in [1,n], A_{ii} \stackrel{E_{i}j}{=} A_{ki} \stackrel{E_{i}l}{=} E_{ij} \stackrel{A_{i}l}{=} A_{jk} \stackrel{E_{i}l}{=} E_{il}$$

Or Fij, les Fij avic kti et les Eik avic ktj forment une

famille libre, en tant spur sons famille sle la base Canonique de Mn (IK).

D'où:

$$\forall i, j \in [1, n], \begin{cases} A_{ii} = A_{jj} \\ \forall k \neq i, A_{ki} = 0 \end{cases}$$

$$\forall k \neq j, A_{jk} = 0$$

$$\Rightarrow \begin{cases} \forall i,j \in [1,n], A_{ii} = A_{jj} \\ \forall i \in [1,n], \forall k \neq i, A_{ki} = 0 \end{cases}$$

$$Z_a$$
 madrice A deviat alors: $A = \begin{pmatrix} A_{11} & O \\ O & A_{11} \end{pmatrix} = A_{11} I_n$

Ainsi: $A \in \mathbb{Z}(GL_n(K)) \Rightarrow (\exists \lambda \in K, A = \lambda I_n)$

Or A est inversible, alors $\lambda \neq 0$.

$$2^{\prime}$$
 $\text{ei}:$ $A \in Z(GL_n(K)) \Rightarrow (\exists \lambda \in K^*, A = \lambda I_n)$

 $\frac{\text{Réaproquiement}: Si (\exists \lambda \in \mathbb{K}^*, A = \lambda I_n), a loss A \in Z(GL_n(\mathbb{K}))}{\text{Car} (\forall M \in GL_n(\mathbb{K}), (AI_n).M = M.(\lambda I_n))}$

Conclusion:

 $A \in \mathbb{Z}(GL_n(K)) \Leftrightarrow (\exists \lambda \in K^*, A = \lambda I_n)$

Cad

 $Z(GL_n(K)) = \{ \lambda I_n / \lambda \in K^* \}$

Exercice 2:

 $\overline{\text{Quels sont les sous-groupes finis de } \mathbb{C}^*?$

Solution

Soit
$$H$$
 in som_ groupe fine du groupe (\mathbb{C}^*, \times) .
Notons $Card(H) = n$.

$$\Rightarrow$$
 $(\forall \exists \in H, \exists^n = 1)$ i priogre 1 son élément neutre.

On
$$Carol(H) = Card(\coprod_n) = (=n)$$

Si Herr un son-groupe fini de (C*, x), alors H
est de la forme
$$H = \coprod_{n}$$
 où $n \in \mathbb{N}^*$.

Conclusion:

Les sons-groupes finis de (C*, x) sont les Un, où n'est.

Avec Un l'ensemble des racines nème de l'unité.

Exercice 3:

Soient (G, .) un groupe multiplicatif et L un sous-groupe, avec $L \neq G$. Déterminer $\langle \overline{L} \rangle$, le sous-groupe engendré par le complémentaire de L.

Solution

Exercice 4:

Soit (G, .) un groupe multiplicatif fini, de neutre e et de cardinal \mathbf{n} . Soit H un sous-groupe de G. Notons card(H) = p. Considérons la relation binaire \mathcal{R} définie sur G par

$$x\mathcal{R}y \Leftrightarrow xy^{-1} \in H$$

1) Montrer qu'il s'agit d'une relation d'équivalence sur G.

$$x\mathcal{R}y \Leftrightarrow xy^{-1} \in H$$

- 1) Montrer qu'il s'agit d'une relation d'équivalence sur G.
- 2) Soient $g \in G$ et \overline{g} sa classe d'équivalence.
 - i) Expliciter \overline{g} .

$$x\mathcal{R}y \Leftrightarrow xy^{-1} \in H$$

- 1) Montrer qu'il s'agit d'une relation d'équivalence sur G.
- 2) Soient $g \in G$ et \overline{g} sa classe d'équivalence.
 - i) Expliciter \overline{g} .
 - ii) Montrer que \overline{g} est équipotent à H.

Solution

Une application naturelle de Hvers Hg et.

f: H -> Hg

h -> hg

fert bijective; cheffet:

- I surjective par Construction.

- Injective. (Evident)

$$x\mathcal{R}y \Leftrightarrow xy^{-1} \in H$$

- 1) Montrer qu'il s'agit d'une relation d'équivalence sur G.
- 2) Soient $g \in G$ et \overline{g} sa classe d'équivalence.
 - i) Expliciter \overline{g} .
 - ii) Montrer que \overline{g} est équipotent à H.
- 3) Déduire que p|n. C'est le **théorème de Lagrange**.

Notow
$$g_2, ..., g_n$$
 les Clares d'équivalus. de G .

elles forment une partition de G .

D'en card(G) = $\sum_{i=1}^{n} card(G)$

= $\sum_{i=2}^{n} card(H)$ (d'aprò 2/ii/)

= $\sum_{i=2}^{n} card(H)$

(ard(G)) = $\sum_{i=1}^{n} card(H)$

(ard(G))

$$x\mathcal{R}y \Leftrightarrow xy^{-1} \in H$$

- 1) Montrer qu'il s'agit d'une relation d'équivalence sur G.
- 2) Soient $g \in G$ et \overline{g} sa classe d'équivalence.
 - i) Expliciter \overline{g} .
 - ii) Montrer que \overline{g} est équipotent à H.
- 3) Déduire que p|n. C'est le **théorème de Lagrange**.
- 4) En déduire le résultat du cours :

$$\forall g \in G, \ g^n = e$$

Solution

Exercice 5:

Soit (G, .) un groupe fini, de neutre \mathbf{e} et de cardinal \mathbf{n} , vérifiant que

$$\forall g \in G, \ g^2 = e$$

1) Montrer que G est commutatif.

Soit (G, .) un groupe fini, de neutre \mathbf{e} et de cardinal \mathbf{n} , vérifiant que

$$\forall g \in G, \ g^2 = e$$

- 1) Montrer que G est commutatif.
- 2) Soient H un sous-groupe de G et $x \notin H$. Montrer que $K = H \cup xH$ est un sous-groupe de G et que $card(K) = 2 \times card(H)$.

Solution

2)~)

2)~

Soit (G, .) un groupe fini, de neutre e et de cardinal n, vérifiant que

$$\forall g \in G, \ g^2 = e$$

- 1) Montrer que G est commutatif.
- 2) Soient H un sous-groupe de G et $x \notin H$. Montrer que $K = H \cup xH$ est un sous-groupe de G et que $card(K) = 2 \times card(H)$.
- 3) En déduire que **n** est une puissance de 2.

Dinin de suite. Le processes va s'arrêter. On oura:) Carol (H:) = 22 H: = G Methode 2 Par récurrence fonte sur le cardinal n de G. L> Pown=1, (ad(f)=2° L> Port n EIN . Juposous que la propriété est vrair jusqu'in Mopulaille est vraie pour (n+2). Port (G, .) graye de cordinal (n+2) et virifiant: (treG, x=e) Pot Hun sow-promper strict de Giçarxeste Clark (as d.)e). Brenous H Comme étant de plus grand cardinal. Jost 71 &H.) HU(1/4H) S-prosper Sto G (Card (HU(1/4H)) = 2 (ad(H) Or cord(H) &n et (Yhf Hih'=e) Mos par hypothise de récurrence, il excite pero Id que Card(H)=2. Dinin, HU (aH) s-prome de G de Cordinal 21. Or HU(nH) = G par definition de H.

Fin Exercice 5

Dlow la Conclusion.

Exercice 7:

Soient (G, .) un groupe fini et ψ un morphisme de G vers le groupe \mathbb{C}^* . Supposons que ψ n'est pas une application constante.

Montrer que $\sum_{g \in G} \psi(g) = 0$.

Solution