EXERCICES MPSI

Probabiltés - Partie 1

Exercice 1:

Pour aller à l'école, Ali emprunte au hasard l'un des trois itinéraires possibles : I_1 , I_2 ou I_3 .

S'il emprunte I_1 , il arrive à l'heure.

S'il emprunte I_2 , il arrive à l'heure avec la probabilité $\frac{3}{4}$. S'il emprunte I_3 , il arrive à l'heure avec la probabilité $\frac{2}{3}$.

Aujourd'hui, Ali est arrivé à l'heure.

Quelle est la probabilité qu'il avait pris l'itinéraire I_1 ?

Exercice 2:

Une compagnie aérienne étudie la réservation sur l'un de ses vols.

Une place donnée est libre le jour d'ouverture de la réservation (c'est le jour 0).

Son état évolue chaque jour jusqu'à la fermeture de la réservation de la manière suivante:

Si la place est réservée le jour k, elle le sera encore le jour (k+1) avec la probabilité $\frac{9}{10}$.

Si la place est libre le jour k, elle sera réservée le jour (k+1) avec la probabilité $\frac{4}{10}$.

Pour $k \in \mathbb{N}$, on note r_k la probabilité que la place soit réservée le jour k.

- 1) Calculer r_0 et r_1 .
- 2) Exprimer r_{k+1} en fonction de r_k .
- 3) En déduire l'expression explicite de r_k en fonction de k.

Exercice 3:

Une boite A contient deux jetons portant le numéro 0 et une boite B contient deux jetons portant le numéro 1.

On tire au hasard un jeton dans chaque boite et on les échange.

On recommence cette opération n fois.

On s'intéresse à la somme des jetons contenus dans l'urne A à l'instant t=n. Pour cela on introduit les évènements suivants :

 P_n : " la somme des jetons contenus dans l'urne A à l'instant t=n vaut 0"

 Q_n : " la somme des jetons contenus dans l'urne A à l'instant t=n vaut 1 "

 R_n : " la somme des jetons contenus dans l'urne A à l'instant t=n vaut 2 "

On note: $p_n = P(P_n)$, $q_n = P(Q_n)$ et $r_n = P(R_n)$.

- 1) Calculer $p_0, q_0, r_0, p_1, q_1, r_1$.
- 2) Exprimer p_{n+1} (resp q_{n+1}) (resp r_{n+1}) en fonction de p_n , q_n , r_n .

EXERCICES MPSI

3) Montrer que

$$\forall n \succeq 0, \ q_{n+2} = \frac{1}{2}q_{n+1} + \frac{1}{2}q_n$$

- 4) En déduire l'expression de q_n en fonction de n puis celle de p_n et de r_n .
- 5) Déterminer les limites des trois suites. Interprétation?

Exercice 4:

Soit $a \in]0, \frac{1}{2}[$.

Dans une bourse de valeurs, un titre donné peut **monter**, rester **stable** ou **baisser**.

On considère que :

- * Le premier jour, le titre est stable.
- * Si un jour n le titre monte, le jour (n+1), il montera avec la probabilité (1-2a), restera stable avec la probabilité a et baissera avec la probabilité a.
- * Si un jour n le titre est stable, le jour (n+1), il montera avec la probabilité a, restera stable avec la probabilité (1-2a) et baissera avec la probabilité a.
- * Si un jour n le titre baisse, le jour (n+1), il montera avec la probabilité a, restera stable avec la probabilité a et baissera avec la probabilité (1-2a). On considère les événements suivants :

 M_n : "Le titre monte le jour n" S_n : "Le titre reste stable le jour n"

 B_n : "Le titre baisse le jour n"

- 1) On pose $p_n = P(M_n), q_n = P(S_n), r_n = P(B_n).$
 - a) Expliciter p_{n+1} (resp q_{n+1}) en fonction de p_n , q_n , r_n .
 - b) Que vaut $p_n + q_n + r_n$? En déduire l'expression de r_n en fonction p_n et q_n .
- 2) Montrer que les suites (p_n) et (q_n) sont arithmético-géométriques.
- 3) En déduire p_n , q_n puis r_n en fonction de n.

Exercice 5:

Deux pièces A et B sont reliées entre elles par une porte ouverte.

Seule la pièce B possède une issue vers l'extérieur.

Une guêpe, initialement dans la pièce A, voudrait sortir à l'air libre (l'extérieur).

Son trajet obéit aux règles suivantes :

- * Lorsqu'elle est en A au temps t=n, alors , au temps t=n+1, elle reste en A avec une probabilité égale à $\frac{1}{3}$, ou elle passe en B avec une probabilité égale à $\frac{2}{3}$.
- * Lorsqu'elle est en B au temps t=n, alors , au temps t=n+1, elle retourne en A avec une probabilité égale à $\frac{1}{4}$, ou elle reste en B avec une

EXERCICES MPSI

probabilité égale à $\frac{1}{2}$ ou elle sort à l'air libre avec une probabilité égale à $\frac{1}{4}$. * Lorsqu'elle sort, elle ne revient jamais.

Au temps t = 0, la guêpe est en A.

On considère les évènements et les notations suivants :

 A_n : " à l'instant t = n, la guêpe est en A" B_n : " à l'instant t = n, la guêpe est en B" S_n : " à l'instant t = n, la guêpe est libre (sortie) " $a_n = P(A_n)$, $b_n = P(B_n)$, $s_n = P(S_n)$

- 1) Calculer $a_0, b_0, s_0, a_1, b_1, s_1$.
- 2) a) Exprimer a_{n+1} et b_{n+1} en fonction de a_n et b_n .
 - b) Vérifier que la suite (u_n) est constante à partir de 1, où

$$\forall n \in \mathbb{N}, \ u_n = \frac{6}{10}a_n - \frac{3}{10}b_n$$

c) Montrer que la suite (v_n) est géométrique de raison $\frac{5}{6}$, où

$$\forall n \in \mathbb{N}, \ v_n = \frac{4}{10}a_n + \frac{3}{10}b_n$$

En déduire l'expression de v_n en fonction de n.

- d) Donner l'expression de a_n et b_n en fonction de n.
- 3) a) Justifier que

$$\forall n \geq 2, \ s_n = \frac{1}{4}b_{n-1} + s_{n-1}$$

b) En déduire s_n en fonction de n. Calculer $\lim_{n\to+\infty} s_n$. Interprétation?

Exercice 6:

Une urne contient 2 boules blanches et 8 boules noires.

Un joueur tire successivement n boules avec remise.

S'il tire une boule blanche, il gagne 2 points, sinon il en perd 3.

Soient X le nombre de boules blanches et Y le nombre de points obtenus.

- 1) Déterminer la loi de X, puis E(X) et V(X).
- 2) Exprimer Y en fonction de X. En déduire la loi de Y, puis E(Y) et V(Y).

Exercice 7:

Une piste rectiligne est divisée en cases numérotées 0, 1, 2, ... de gauche à droite

une puce se déplace vers la droite de une ou deux cases au hasard à chaque saut.

EXERCICES MPSI

Au départ, elle est sur la case 0.

La puce a effectué n sauts.

Soit X_n le numéro de la case occupée par la puce.

Soit Y_n le nombre de fois où la puce a sauté d'une seule case.

- 1) Donner la loi de Y_n , $E(Y_n)$ et $V(Y_n)$.
- 2) a) Exprimer X_n en fonction de Y_n et n.
 - b) En déduire $E(X_n)$ et $V(X_n)$, puis la loi de X_n .

Exercice 8:

Un service après-vente dispose d'équipes de dépannage qui interviennent auprès de la clientèle sur appel téléphonique.

Les appels se produisent de façon indépendante.

La probabilité qu'un retard se produise dans le dépannage à la suite d'un appel est $p = \frac{1}{4}$.

Un même client a appelé le service à 8 dates différentes.

Soit X le nombre de retards que ce client a subi.

Déterminer la loi de X.

Calculer E(X) et V(X).

Exercice 9:

Soient $n \succeq 2$ et $p \in [0, 1]$ fixés. Notons q = 1 - p.

Une secrétaire effectue n appels téléphoniques vers n correspondants distincts.

Pour chaque appel, la probabilité d'obtenir le correspondant demandé est p.

- 1) Soit X le nombre de correspondants obtenus lors de ces n appels. Quelle est la loi de X? Calculer E(X) et V(X).
- 2) Après ces n appels, la secrétaire demande une deuxième fois chacun des (n-X) correspondants qu'elle n'a pas obtenus la première fois. Soit Y le nombre de correspondants obtenus dans la deuxième série d'ap-

pels.

Notons Z = X + Y , le nombre total de correspondants obtenus.

- a) Quelles sont les valeurs prises par Z?
- b) Calculer $p_0=P(Z=0)$ et $p_1=P(Z=1)$; montrer que $p_1=npq^{2n-2}(1+q).$
- c) Calculer $P_{(X=k)}(Y=h)$, pour $k \in [0, n]$ et $h \in [0, n-k]$.
- d) Montrer que $P(Z = s) = \sum_{k=0}^{s} P(X = k, Y = s k)$.
- e) Vérifier que $\binom{n}{k}\binom{n-k}{s-k} = \binom{n}{s}\binom{s}{k}$. En déduire que $P(Z=s) = \binom{n}{s}\left(p(1+q)\right)^s\left(q^2\right)^{n-s}$.
- f) Vérifier que $p(1+q) = 1 q^2$, puis reconnaître la loi de Z.