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Probleme : séries trigonométriques

Il est utile en physique, notamment pour étudier des spectres d’énergie ou pour décomposer un signal
périodique en harmoniques, de pouvoir écrire une fonction périodique en somme d’une série de fonc-
tions trigonométriques.

Nous allons nous intéresser a 'aspect mathématique de cette décomposition pour les fonctions de
période 2.

Dans ce qui suit, on appelle “série trigonométrique” une série de fonctions du type

Z(an cos(nx) + by, sin(nz))

ou (ay) et (by,) sont deux suites de réels.

Dans la premiere partie, on étudie quelques exemples. Dans la deuxieme partie, on s’intéresse plus
particulierement aux séries trigonométriques qui convergent normalement sur R.

On notera Co, I'espace vectoriel des fonctions continues et 27-périodiques de R dans R. Pour f € Cs,
et n € N, on notera

an(f) = L[ f(z)cos(nz) dx et B,(f) = L f(z)sin(nz) dx
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Partie 1 : exemples

5.

Démontrer que la série trigonométrique Y- (5 cos(nx) + 5 sin(na)) converge normalement sur
R. Pour tout entier p > 2, déterminer la somme de la série ), - (

de

el(L’

n
7) puis en déduire la valeur

+§ (21n cos(nx) + 3% Sin(m;))

n=0

(il n’est pas utile de réduire au méme dénominateur).

. Ecrire la fonction ¢ : z — exp(cos(z)) cos(sin(x)) comme la somme d’une série trigonométrique.

On pourra écrire la fonction x — exp(e’*) comme somme de série de fonctions.

Donner un exemple de suite (a,) de limite nulle telle que la série trigonométrique > a,, cos(nx)
ne converge pas simplement sur R.

. On admet que la série trigonométrique - ﬁ sin(nx) converge simplement sur R. Converge-

t-elle normalement sur R 7

Partie 2 : propriétés

Une condition suffisante

9.

Démontrer que si les séries Y a, et Y b, sont absolument convergentes, alors la série trigo-
nométrique » (a, cos(nz) + by, sin(nx)) converge normalement sur R.

Une condition nécessaire

10.

11.

Soient a,b € R quelconques. Démontrer que le maximum de la fonction = — |a cos(x) + bsin(z)|

est Va2 + b2.

Démontrer que si la série trigonométrique > (ay, cos(nz) + by, sin(nx)) converge normalement sur
R, alors les suites (ay,) et (b,) convergent vers 0 et les séries > a, et > b, sont absolument
convergentes.

Autres propriétés

12.

13.

14.

15.

On note f la somme d’une série trigonométrique »_(a, cos(nz) + b, sin(nz)) qui converge nor-
malement sur R. Justifier que f € Co,.

Calculer ["_cos?(nx) dx pour n # 0 et donner la valeur de ["_sin(kx) cos(na) da pour k et n
entiers.

On note f la somme d’une série trigonométrique » (a, cos(nz) + by, sin(nz)) qui converge nor-
malement sur R : pour tout réel z, f(z) = /2 (ay, cos(kx) + by sin(kz)). Démontrer que pour
tout entier naturel n non nul, o, (f) = a, puis exprimer ag(f) en fonction de ag. On pourra
utiliser sans démonstration que pour k # n, ffﬂ cos(kx) cos(nzx) dz = 0.

On admettra, pour la suite du probleéme, que pour tout entier naturel n non nul 8,(f) = b, et
Bo(f) =0 (la démonstration n’est pas demandée).

Soit f € Car. Pour tout réel z, on pose ugp(z) = O‘OT(f). Pour tout entier n > 1, on pose uy,(x) =

an(f) cos(nz) + B, (f)sin(nz). On suppose ici que la série trigonométrique Y (up(z)) converge
normalement sur R vers une fonction notée g :

@Q

Ve € R, g(z) =

(f) , *f( .
5 ar(f) cos(ka) + By(f) sin(kz))
k=1

Quelles relations a-t-on dans ce cas entre ay,(g) et an(f)? Bn(g) et Bu(f)?



16.

17.

18.

19.

20.

21.

22.

11 est admis que si une fonction h € Cy, vérifie : pour tout entier naturel n, a,(h) = B,(h) = 0,
alors h est la fonction nulle. Démontrer que pour tout réel z, g(z) = f(z).

En résumé, lorsque la série trigonométrique » (v, (f) cos(nz) + B, (f)sin(nz)) d’une fonction
f € Co,; converge normalement que R alors pour tout réel z, on a

%]

fla) =22

(f) |~ .
+ 3 (n(f) cos(nz) + Bu(f) sin(nz))

n=1
Si f € Cr est une fonction paire, que vaut (3,(f)? Exprimer, sans démonstration, ay,(f) en
fonction de Vintégrale [ f(x) cos(nz) dx.
Exemple. Soit f € Cy, définie ainsi : pour tout x € [—7, 7], f(z) = 2% et f est 2nx-périodique
sur R. Construire la courbe de cette fonction paire f sur Uintervalle [—3m, 37| puis déterminer,
pour tout entier naturel, les coefficients a,(f) et B,(f). Donner une série trigonométrique qui
converge normalement sur R vers f.

En déduire les sommes

+o0o +o00o
(=" 1

Dt Do

n=1 n=1

Déduire alors de la seconde somme la valeur de

“+o00

1
nz: (2n +1)?

In(1+4=x)

Application. Justifier que la fonction x — === est intégrable sur l'intervalle ]0, 1] puis démontrer
que fol 7111(1;1) dr = %
La somme d’une série trigonométrique qui converge normalement sur R est-elle nécessairement

une fonction dérivable sur R?

Proposer une condition suffisante sur les séries > na, et Y nb, pour que la somme de la série
trigonométriquen) _(a, cos(nx) + by, sin(nx)), qui converge normalement sur R soit une fonction
dérivable sur R.

Déterminer la somme de la série trigonométrique ) =3 cos(nx).



Solution

5. Démontrer que la série trigonométrique » (2% cos(nx) + 3L sin(nz)) converge normalement sur

R
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@ Pour tout entier p > 2, déterminer la somme de la série > - (e?) puis en déduire la valeur
de

io (zin cos(nz) + Sin sin(m;))

n=>0

(il n’est pas utile de réduire au méme dénominateur).
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6. Ecrire la fonction ¢ : z +— exp(cos(x))

On pourra écrire la fonction x — exp(e’®

cos(sin(x)) comme la somme d’une série trigonométrique
) comme somme de série de fonctions.

~ X

Dans ce qui suit, on appelle “série trigonométrique” une série de fonctions du type

Z(a,, cos(nz) + by sin(nzx))

ol (a,) et (b,) sont deux suites de réels.

exp ) - e} (Gnori 1)

(5o A AmY
—Z . 2
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axy =7 (.;x)n
exp (e ) :Z_ _ﬁ,l__.
no

’{,V\‘w Dans ce qui suit, on appelle “série trigonométrique” une série de fonctions du type
€
= Z ___-——'—— Z(a” cos(nz) + by, sin(nx))
i
M=o . ol (a,) et (b,) sont deux suites de réels.
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7. Donner un exemple de suite (a,) de limite nulle telle que la série trigonométrique > a, cos(nz)
ne converge pas simplement sur R.
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8. On admet que la série trigonométrique ) -, % sin(nzx) converge simplement sur R. Converge-
t-elle normalement sur R 7
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Partie 2 : propriétés
Une condition suffisante

9. Démontrer que si les séries > a, et > b, sont absolument convergentes, alors la série trigo-
nométrique » (ay, cos(nx) + b, sin(nx)) converge normalement sur R.
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Une condition nécessaire

10. Soient a,b € R quelconques. Démontrer que le maximum de la fonction z + |a cos(z) + bsin(z)|

est va? + b2.
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11. Démontrer que si la série trigonométrique » _(a,, cos(nx) + b, sin(nx)) converge normalement sur
R, alors les suites (a,) et (b,) convergent vers 0 et les séries »_ a, et > b, sont absolument
convergentes.
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Autres propriétés

12. On note f la somme d’une série trigonométrique »(a, cos(nz) + by, sin(nx)) qui converge nor-
malement sur R. Justifier que f € Cor.
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13. Calculer ["_cos®(nz) dz pour n # 0 et donner la valeur de [” sin(kxz) cos(nz) dx pour k et n
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14. On note f la somme d’une série trigonométrique > (ay cos(nz) + by, sin(nx)) qui converge nor-

malement sur R : pour tout réel z, f(z) = 375 (ax cos(kx) + by sin(kz)). Démontrer que pour

tout entier naturel n non nul, a,(f) = a, puis exprimer ag(f) en fonction de ag. On pourra
utiliser sans démonstration que pour k # n, ffw cos(kx) cos(nx) dxr = 0.
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15. Soit f € Car. Pour tout réel z, on pose ug(z) = O’”T(f) Pour tout entier n > 1, on pose u,(z) =
an(f) cos(nz) + B,(f)sin(nx). On suppose ici que la série trigonométrique Y (u,(z)) converge
normalement sur R vers une fonction notée g :

ao(f) , *f( .
5 ag(f) cos(kx) + Bi(f) sin(kx))

k=1

Vz € R, g(z) =

Quelles relations a-t-on dans ce cas entre o, (g) et a,(f)? Bn(g) et Bn(f)?
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16. Il est admis que si une fonction h € Cs, vérifie : pour tout entier naturel n, ay,(h) = B,(h) = 0,
alors h est la fonction nulle. Démontrer que pour tout réel z, g(z) = f(z).

En résumé, lorsque la série trigonométrique ) (o, (f)cos(nz) + B,(f)sin(nz)) d'une fonction
f € Ca; converge normalement que R alors pour tout réel z, on a

ao(f)

+0o0
f@) = =7+ D _(an(f) cos(na) + Ba(f) sin(nz))
n=1

Yok {e C, .
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D e A 4 Al{g) =of

%n({w 7- 4-9]|.
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17. Si f € Cor est une fonction paire, que vaut 3,(f)? Exprimer, sans démonstration, a,(f) en
fonction de I'intégrale [ f(z) cos(nz) dz.

?JM’;{(C—ZW ,7@1 :
) . Ul
/BM/,,‘O —':;r"l” {[) sin (1)

=0, (o /4 7/0“%‘% 7;__>j/*4)/& (hw) 4 8- Wf. .

7
/;/‘b 0<v\( — —:é 2 A
) Adf) = le f()ﬁa(tnﬂol
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18. Exemple. Soit f € Ca, définie ainsi : pour tout = € [—m, 7|, f(z) = 2% et f est 2m-périodique
sur R. Construire la courbe de cette fonction paire f sur l'intervalle [—3m, 37| puis déterminer,
pour tout entier naturel, les coefficients o, (f) et 3,(f). Donner une série trigonométrique qui
converge normalement sur R vers f.
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19. En déduire les sommes

+00 +o00
=" 1

2 X

n=1 n=1

Déduire alors de la seconde somme la valeur de

+oo

1
nz_:l (2n +1)2
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20. Application. Justifier que la fonction z +—» est intégrable sur l'intervalle |0, 1[ puis démontrer

que fol ln(l;—a:) s 2
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21. La somme d’une série trigonométrique qui converge normalement sur R est-elle nécessairement
une fonction dérivable sur R 7
Proposer une condition suffisante sur les séries » na, et > nb, pour que la somme de la série
trigonométriquen _(a, cos(nz) + by, sin(nz)), qui converge normalement sur R soit une fonction
dérivable sur R.
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Proposer une condition suffisante sur les séries Y na, et Y nb, pour que la somme de la série
trigonométriquen _ (a, cos(nz) + by, sin(nz)), qui converge normalement sur R soit une fonction
dérivable sur R.
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22. Déterminer la somme de la série trigonométrique > 3 cos(nx).
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