
Exercice 1:

Séries entières
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Déterminer le rayon de convergence des séries entières :
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c) f) i)

Pour x réel, on pose

f(x) =
+∞∑
n=1

xn√
n

a) Déterminer le rayon de convergence R de la série entière définissant f .
b) Étudier la convergence de la série entière en 1 et en −1.
c) Établir la continuité de f en −1.
d) Déterminer la limite de f en 1.

Former le développement en série entière en 0 de la fonction

x 7→ ln(x2 + x+ 1)

Former le développement en série entière de

1− z cos t
1− 2z cos t+ z2

pour |z| < 1 et t ∈ ]0 ;π[.

Soient a ∈ C∗ et p ∈ N. Former le développement en série entière de

x 7→ 1
(x− a)p+1

Établir que pour tout x ∈ ]−1 ; 1[ et a ∈ R

1
(1− x)a =

+∞∑
n=0

a(a+ 1) . . . (a+ n− 1)
n! xn

Former le développement en série entière en 0 de la fonction

x 7→ ln(x2 − 5x+ 6)
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Soient p ∈ N et
f(x) =

+∞∑
n=0

(
n+ p

p

)
xn

a) Déterminer le rayon de convergence de la série entière définissant cette
fonction.

b) Calculer f(x) en étudiant (1− x)f ′(x).

Soit f définie sur ]−1 ; 1[ par

f(x) = arcsin x√
1− x2

a) Justifier que f est développable en série entière sur ]−1 ; 1[.
b) Montrer que f est solution de l’équation différentielle (1− x2)y′ − xy = 1.
c) Déterminer le développement en série entière de f sur ]−1 ; 1[.

Soit

f : x 7→
+∞∑
n=2

(−1)n

n(n− 1)x
n

a) Déterminer l’intervalle de convergence de f .
b) Exprimer la fonction f à l’aide des fonctions usuelles sur ]−1 ; 1[
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∑
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∑
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∑
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4) 5) 6)

a) Montrer que la fonction x 7→ sin x
x se prolonge en une fonction de classe C∞

sur R.
b) Montrer qu’il en est de même de la fonction x 7→ sin x

ex−1

Exercice 12:

Montrer ∫ 1

0
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x

dx =
+∞∑
n=1

(−1)n−1
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∫ 1

0

arctan x
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Montrer que pour tout a > 0,∫ 1

0

dt
1 + ta

=
+∞∑
n=0

(−1)n

na+ 1

En déduire les sommes
+∞∑
n=0

(−1)n

n+ 1 et
+∞∑
n=0

(−1)n

2n+ 1

Exercice 14:

Exercice 15:
Trouver une solution particulière non nulle sur ]0,+∞[ de l’équation différentielle (qu’on ne résoudra
pas totalement) :

x2y′′ + x(1 + x)y′ − y = 0

On la cherchera sous forme d’une série entière avant de l’exprimer à l’aide des fonctions usuelles.

Exercice 16:

1. Trouver la solution f de l’équation différentièlle : y′ − 2xy = 1 vérifiant f(0) = 0.
2. Développer f en série entière à l’origine .

3. En déduire la valeur de :
n∑

k=0

(−1)k

2k + 1
Ck

n.
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