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Concours National commun - Session 2014
Épreuve spécifique - Filière MP

Mathématiques I
Durée : 4 heures

• • • • • • • • ••

L’usage de la calculatrice est interdit.

Les candidats sont informés que la qualité de la rédaction et de la présentation, la clarté et la précision des
raisonnements constitueront des éléments importants pour l’appréciation des copies. Il convient en particulier

de rappeler avec précision les références des questions abordées.
Si au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur d’énoncé, il le signale sur sa copie
et poursuit sa composition en expliquant les raisons des initiatives qu’il est amené à prendre.



Problème

Sous-espaces de Mn(IK) formés de matrices
diagonalisables

Dans ce problème, M2(IK) désigne l’algèbre des matrices carrées d’ordre 2 à coefficients dans IK = IR
ou C, et GL2(IK) le groupe des matrices inversibles de M2(IK). Une matrice A ∈ M2(IK) est dite
scalaire si elle est de la forme A = λI2 où λ ∈ IK et I2 la matrice identité de M2(IK).
Les trois parties du problème s’enchaînent entre elles. Dans la première partie, on étudie une caractérisation
des homothéties et on applique le résultat obtenu pour déterminer le commutant d’un endomorphisme ou d’une
matrice en dimension 2 ; la seconde partie porte sur la diagonalisation simultanée des matrices et abouti à
l’étude, pour deux matrices diagonalisables A et B de M2(IK), du lien entre le fait d’être commutables et le
fait que A+ λB soit digonalisable pour tout λ ∈ IK. La dernière partie est consacrée à l’étude des sous-espaces
vectoriels de M2(IK) formes de matrices diagonalisables.

Première partie :
Caractérisation des homothéties en dimension 2

Application au commutant
E désigne un espace vectoriel de dimension 2 et L (E) l ’algèbre des endomorphismes de E. Si f ∈
L (E), on note C (f) l’ensemble des endomorpbismes de E qui commutent avec f : C (f) = {g ∈
L (E)/fg = gf}.

1.1 Soit f ∈ L (E) tel que, pour tout x ∈ E, la famille (x, f(x)) est liée.

1.1.1 Montrer que, pour tout x ∈ E\{0E}, il existe un unique λx tel que f(x)λxx.

1.1.2 Soit (e1, e2) une base de E ; montrer que λe1 = λe2 .

1.1.3 On pose λ = λe1 = λe2 . Montrer que f = λidE ( homothétie de rapport λ ).

1.2 Soit f un endomorphisme de E.

1.2.1 Montrer que C (f) est un sous-espace vectoriel de L (E).

1.2.2 Déterminer C (f) si f est une homothétie.

1.3 Soit f un endomorphisme de E qui n’est pas une homothétie.
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1.3.1 Justifier qu’il existe e ∈ E tel que la famille (e, f(e)) soit une base de E.

1.3.2 Si g ∈ L (E), justifier qu’il existe un unique couple (α, β) ∈ IK2 tel que g(e) = αe + βf(e)
et montrer que g ∈ C (f) si et seulement si, g = αidE + βf .

1.3.3 Préciser C (f) ; quelle est sa dimension ?

1.4 Traduction matricielle : Soit A ∈ M2(IK) ; on pose C (A) = {M ∈ M2(IK)/AM = MA}.

1.4.1 Si A est une matrice scalaire, déterminer C (A).

1.4.2 Si A n’est pas une matrice scalaires, montrer que C (A) = Vect(I2, A) ; quelle est sa dimen-
sion ?

Deuxième partie :
Diagonalisation simultanée dans M2(IK)

2.1 Pour quels triplets (a, b, c) ∈ IK3 la matrice
(

a b
0 c

)

est-elle diagonalisable dans M2(IK) ?

2.2 Donner alors un exemple de matrice de M2(IK) qui n’est pas diagonalisable dans M2(IK).

2.3 Soit A ∈ M2(IK) et λ ∈ IK ; montrer que la matrice A est diagonalisable dans M2(IK) si, et
seulement si, la matrice A+ λI2 l’est aussi.

2.4 Soient A et B deux matrices diagonalisables de M2(IK) telles que AB = BA.

2.4.1 Montrer que les matrices A et B sont simultanément diagonalisables dansM2(IK), c’est à
dire qu’il existe P ∈ GL2(IK) telle que les matrices PAP−1 et PBP−1 soient diagonales.
On pourra remarquer que B ∈ C (A) et traiter à part le cas où A est une matrice scalaire.

2.4.2 Montrer que, pour tout λ ∈ IK, A+ λB est diagonalisable dans M2(IK).

2.5 Familles de matrices diagonalisables

2.5.1 Soient (Ai)i∈I une famille de matrices diagonalisables de M2(K). On suppose en outre que
ces matrices commutent deux à deux : ∀(i, j) ∈ I2, AiAj = AjAi.
Montrer que les matrices Ai, i ∈ I , sont simultanément diagonalisables dans M2(IK), c’est
à dire qu’il existe P ∈ GL2(IK) telle que, pour tout i ∈ I , la matrice PAiP

−1 soit diagonale.
On pourra traiter à part le cas où toutes ces matrices sont scalaires.

2.5.2 Soit m ∈ IN∗. Montrer que si A1, ..., Am sont des matrices involutives de M2(IK) qui com-
mutent deux à deux, alors m ≤ 4. On rappelle que M ∈ M2(IK) est dite involutive si
M2 = I2.

2.6 On considère les matrices J =

(

0 0
0 1

)

et K =

(

a 1
1 d

)

où a et d sont des nombres réels.

2.6.1 Montrer que, pour tout λ ∈ IR, la matrice J + λK est diagonalisable dans M2(IR).

2.6.2 Est-ce que les matrices J et K commutent entre elles ?

2.7 On se place dans le cas complexe et on se donne deux matrices A et B diagonalisables dans
M2(C) telles que, pour λ ∈ C, la matrice A + λB soit diagonalisable dans M2(C). On suppose
que B n’est pas une matrice scalaire.
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2.7.1 Montrer qu’il existe P ∈ GL2(C) et deux complexes distincts α et β tels que

B = P

(

α 0
0 β

)

P−1.

Dans la suite, on pose γ = β − α et P−1AP =

(

a b
c d

)

. Pour tout λ ∈ C, on note χλ le

polynôme caractéristique de la matrice A+ λ(B − αI2) et δλ le discriminant de χλ.

2.7.2 Calculer δλ en fonction de a, b, c, d, γ et λ, et montrer que c’est un polynôme de degré 2 en
λ.

2.7.3 En déduire qu’il existe λ0 ∈ C tel que A+ λo(B − αI2) soit une matrice scalaire.

2.7.4 Conclure que AB = BA.

Troisième partie :
Étude des sous-espaces de M2(IK) formés de matrices

diagonalisables
3.1 Soit F un sous-espace vectoriel non nul de M2(C) formé de matrices diagonalisables.

3.1.1 Si F contient une matrice A qui n’est pas scalaire, montrer que F ⊆ C (A) puis conclure
que F = C (A) ou F = C.A = {λA/λ ∈ C}. Préciser la dimension de F dans chacun de
ces deux cas.

3.1.2 Envisager le cas restant en précisant la dimension de F .

3.2 Donner un exemple de sous-espace vectoriel de M2(C), formé de matrices diagonalisables, et
qui soient de dimension 1 (resp. 2).

Dans la suite du problème, on s’intéresse aux sous-espaces vectoriels de M2(IR) formé de ma-
trices diagonalisables dans M2(IR). On note S2(IR) le sous-espace vectoriel de M2(IR) formé
des matrices symétriques.

Si M est un sous-espace vectoriel de M2(IR) et P ∈ GL2(IR), on note PMP−1 l’ensemble défini
par

PP
−1 = {PMP−1/M ∈ M }.

3.3 Montrer que si M est un sous-espace vectoriel de M2(IR) et P ∈ GL2(IR), alors PMP−1 est
aussi un sous-espace vectoriel de M2(IR), de même dimension que M .

3.4 Montrer que S2(IR) est un hyperplan de M2(IR) formé de matrices diagonalisables.

3.5 Justifier que si R ∈ GL2(IR) alors RS2(IR)R−1 est un hyperplan de M2(IR) formé de matrices
diagonalisables.

3.6 Soit F hyperplan de M2(IR) formé de matrices diagonalisables ; on se propose de montrer
que F est conjugué à S2(IR), c’est à dire qu’il existe une matrice P ∈ GL2(IR) telle que F =
PS2(IR)P−1.

3.6.1 Montrer que I2 ∈ F . On pourra raisonner par l’absurde.
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3.6.2 Soit A ∈ F\IR.I2 ; montrer qu’il existe Q ∈ GL2(IR) telle que Q

(

1 0
0 0

)

Q−1 ∈ F . On

pourra diagonaliser A et exploiter le fait que F est un sous-espace vectoriel de M2(IR).
Dans la suite, une telle matrice Q est choisie et on pose W = Q−1FQ. Il est clair que W

est un hgperplan de M2(IR) formé de matri.ces diagonalisables et contenant les matrices I2 et

A1 =

(

1 0
0 0

)

.

Soit B ∈ W \Vect(I2, A1).

3.6.3 On pose B =

(

a b
c d

)

. Montrer que
(

0 b
c 0

)

∈ W \Vect(I2, A1) et que bc > 0.

3.6.4 En déduire qu’il existe w > 0 tel que B1 =

(

0 w2

1 0

)

∈ W et justifier que W =

Vect(I2, A1, B1).

3.6.5 Diagonaliser la matrice B1 et en déduire que W est conjugué a S2(IR) puis conclure.

3.7 Montrer que tout sous-espace vectoriel V de M2(IR), formé de matrices diagonalisables, est
conjugué à un sous-espace vectoriel de S2(IR). Si dimV = 2, on pourra distinguer les cas I2 ∈ V

et I2 /∈ V .

3.8 Préciser les sous-espaces vectoriels de M2(IR) formés de matrices orthogonalement diagonali-
sables.

Fin de l’épreuve


