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Mathématiques I

Durée : 4 heures

L'usage de la calculatrice est interdit.

Les candidats sont informés que la qualité de la rédaction et de la présentation, la clarté et la précision des
raisonnements constitueront des éléments importants pour I'appréciation des copies. Il convient en particulier

de rappeler avec précision les des questions abordées.

Si au cours de I'épreuve, un candidat repere ce qui lui semble étre une erreur d’énoncé, il le signale sur sa copie
et poursuit sa composition en expliquant les raisons des initiatives qu’il est amené a prendre.



Probleme

Sous-espaces de .7, (IK) formés de matrices
diagonalisables

Dans ce probleme, .#>(IK) désigne 1’algebre des matrices carrées d’ordre 2 a coefficients dans IK = IR
ou C, et GLz(K) le groupe des matrices inversibles de .#,(IK). Une matrice A € #5(K) est dite
scalaire si elle est de la forme A = Al ot A € K et 5 la matrice identité de .5 (IK).

Les trois parties du probléme s’enchainent entre elles. Dans la premiére partie, on étudie une caractérisation
des homothéties et on applique le résultat obtenu pour déterminer le commutant d’un endomorphisme ou d’une
matrice en dimension 2; la seconde partie porte sur la diagonalisation simultanée des matrices et abouti 4
I'étude, pour deux matrices diagonalisables A et B de .#>(IK), du lien entre le fait d’étre commutables et le
fait que A + AB soit digonalisable pour tout A € IK. La derniére partie est consacrée a I'étude des sous-espaces
vectoriels de /> (IK) formes de matrices diagonalisables.

Premiere partie :
Caractérisation des homothéties en dimension 2
Application au commutant

E désigne un espace vectoriel de dimension 2 et Z(E) 1 ’algebre des endomorphismes de E. Si f €
Z(E), on note € (f) 'ensemble des endomorpbismes de E qui commutent avec f : €(f) = {g €

Z(E)/fg=gf}
1.1 Soit f € Z(FE) tel que, pour tout z € E, la famille (z, f(x)) est liée.
1.1.1 Montrer que, pour tout z € E\{0g}, il existe un unique A, tel que f(z)A\, .
1.1.2 Soit (e1, e2) une base de E ; montrer que ., = A,.
1.1.3 On pose A = A;; = A¢,. Montrer que f = Aidg (homothétie de rapport A ).
1.2 Soit f un endomorphisme de E.
1.2.1 Montrer que %(f) est un sous-espace vectoriel de Z(E).
1.2.2 Déterminer €(f) si f est une homothétie.

1.3 Soit f un endomorphisme de E qui n’est pas une homothétie.



1.3.1 Justifier qu'il existe e € E tel que la famille (e, f(e)) soit une base de E.

1.3.2 Si g € Z(E), justifier qu'il existe un unique couple (a, 3) € KK tel que g(e) = ae + Bf(e)
et montrer que g € €(f) si et seulement si, g = aidg + Sf.

1.3.3 Préciser €(f); quelle est sa dimension ?
1.4 Traduction matricielle : Soit A € .#5(K); on pose ¢ (A) = {M € #>(K)/AM = MA}.
1.4.1 Si A est une matrice scalaire, déterminer € (A).

1.4.2 Si A n’est pas une matrice scalaires, montrer que % (A) = Vect(Iz, A); quelle est sa dimen-
sion ?

Deuxieme partie :
Diagonalisation simultanée dans .#5(KK)

2.1 Pour quels triplets (a, b, ¢) € IK® la matrice ( g

l; ) est-elle diagonalisable dans .4, (IK) ?

2.2 Donner alors un exemple de matrice de .#5(IK) qui n’est pas diagonalisable dans .#>(IK).

2.3 Soit A € #>(K) et A € IK; montrer que la matrice A est diagonalisable dans .#5(IK) si, et
seulement si, la matrice A + \I; 1'est aussi.

2.4 Soient A et B deux matrices diagonalisables de .#5(IK) telles que AB = BA.

2.4.1 Montrer que les matrices A et B sont simultanément diagonalisables dans.#(IK), c’est a
dire qu'il existe P € GLy(K) telle que les matrices PAP~! et PBP~! soient diagonales.
On pourra remarquer que B € €' (A) et traiter a part le cas ol A est une matrice scalaire.

2.4.2 Montrer que, pour tout A € IK, A + AB est diagonalisable dans .#>(IK).
2.5 Familles de matrices diagonalisables

2.5.1 Soient (A;);cr une famille de matrices diagonalisables de .#>(K). On suppose en outre que
ces matrices commutent deux a deux : V(i, j) € I?, A;A; = A A;.
Montrer que les matrices A;, i € I, sont simultanément diagonalisables dans .#>(IK), c’est
a dire qu'il existe P € GL(K) telle que, pour tout i € I, la matrice PA; P~ soit diagonale.
On pourra traiter a part le cas ot toutes ces matrices sont scalaires.

2.5.2 Soit m € IN*. Montrer que si Ay, ..., A, sont des matrices involutives de .#5(IK) qui com-
mutent deux a deux, alors m < 4. On rappelle que M € #5(K) est dite involutive si
M? = I,.

0 0

a 1 N .
0 1 ) et K = ( 1 d ) ot a et d sont des nombres réels.

2.6 On considere les matrices J = (

2.6.1 Montrer que, pour tout A € IR, la matrice J + AK est diagonalisable dans .#5(IR).
2.6.2 Est-ce que les matrices J et K commutent entre elles ?

2.7 On se place dans le cas complexe et on se donne deux matrices A et B diagonalisables dans
A5 (C) telles que, pour A € C, la matrice A + AB soit diagonalisable dans .#5(C). On suppose
que B n’est pas une matrice scalaire.



2.7.1 Montrer qu’il existe P € GL(C) et deux complexes distincts « et 3 tels que

B_P<g‘ Z)Pl.

a b
d
polynoéme caractéristique de la matrice A + A(B — als) et 6, le discriminant de .

Dans la suite, on pose vy = 8 — av et P lAP = > Pour tout A € C, on note ) le

2.7.2 Calculer §, en fonction de a, b, ¢, d, vy et A, et montrer que c’est un polynéme de degré 2 en
A

2.7.3 En déduire qu'il existe Ay € C tel que A + \,(B — al2) soit une matrice scalaire.
2.7.4 Conclure que AB = BA.

Troisieme partie :

Ftude des sous-espaces de .#5(IK) formés de matrices

3.1

3.2

3.3

3.4
35

3.6

diagonalisables

Soit .# un sous-espace vectoriel non nul de .#(C) formé de matrices diagonalisables.

3.1.1 Si.# contient une matrice A qui n’est pas scalaire, montrer que .# C % (A) puis conclure
que # = € (A) ou.# = C.A = {NA/) € C}. Préciser la dimension de .# dans chacun de
ces deux cas.

3.1.2 Envisager le cas restant en précisant la dimension de ..

Donner un exemple de sous-espace vectoriel de .#>(C), formé de matrices diagonalisables, et
qui soient de dimension 1 (resp. 2).

Dans la suite du probléme, on s’intéresse aux sous-espaces vectoriels de .#;(IR) formé de ma-
trices diagonalisables dans .#>(IR). On note .#%2(IR) le sous-espace vectoriel de .#;(R) formé
des matrices symétriques.

Si ./ est un sous-espace vectoriel de .#»(IR) et P € GL2(IR), on note P.# P~! 'ensemble défini
par

P~ ={PMP'/M c .#}.
Montrer que si .# est un sous-espace vectoriel de .Z>(IR) et P € GLy(IR), alors P.# P~ est
aussi un sous-espace vectoriel de .#5(IR), de méme dimension que .#.
Montrer que > (IR) est un hyperplan de .#>(IR) formé de matrices diagonalisables.

Justifier que si R € GL2(IR) alors R.%(IR)R~! est un hyperplan de .#>(IR) formé de matrices
diagonalisables.

Soit .# hyperplan de .#>(IR) formé de matrices diagonalisables; on se propose de montrer
que Z est conjugué a .#>(IR), c’est a dire qu'il existe une matrice P € GLy(IR) telle que .# =
P (]R)Pil

3.6.1 Montrer que I> € .#. On pourra raisonner par I'absurde.



10\ .,
0 O)Q € Z#.0n

pourra diagonaliser A et exploiter le fait que .# est un sous-espace vectoriel de .#,(IR).

Dans la suite, une telle matrice Q est choisie et on pose # = Q 1.ZQ. 1l est clair que W
est un hgperplan de .#>(IR) formé de matri.ces diagonalisables et contenant les matrices I, et

1 0
W (1
Soit B € W\ Vect(IQ,Al).

a b
3.6.3 Onpose B = ( e d

3.6.2 Soit A € #\IR.I;; montrer qu’il existe Q € GL3(R) telle que Q (

>. Montrer que ( (C) 8 > € #'\ Vect(I2, A1) et que be > 0.

0 w?

3.6.4 En déduire qu'il existe w > 0 tel que B, = ( 1 0

Vect(Ig, Al, Bl)

3.6.5 Diagonaliser la matrice B; et en déduire que #  est conjugué a .#5(IR) puis conclure.

) € W et justifier que ¥ =

3.7 Montrer que tout sous-espace vectoriel ¥ de .#>(IR), formé de matrices diagonalisables, est
conjugué a un sous-espace vectoriel de .75 (IR). Si dim #* = 2, on pourra distinguer les cas I, € ¥
et _[2 ¢ V.

3.8 Préciser les sous-espaces vectoriels de .#>(IR) formés de matrices orthogonalement diagonali-
sables.

Fin de I'épreuve



