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Inégalités de Bernstein
Le but de ce problème est d’étudier les inégalités dites de Bernstein dans deux cadres différents.
La première partie s’intéresse à la démonstration de l’inégalité de Bernstein pour les polynômes et à certaines
applications. La deuxième partie introduit la notion de transformée de Fourier et permet d’établir une inégalité
de Bernstein pour des fonctions dont la transformée de Fourier vérifie certaines propriétés.
Les deux parties de ce sujet sont complètement indépendantes et peuvent être traitées dans l’ordre désiré.

I Inégalité polynomiale de Bernstein et applications
Dans cette partie,
— si 𝑛 ∈ ℕ, on note ℂ𝑛[𝑋] le ℂ-espace vectoriel des polynômes à coefficients complexes de degré inférieur ou

égal à 𝑛 ;
— si 𝑛 ∈ ℕ∗, on note 𝒮𝑛 le ℂ-espace vectoriel des fonctions 𝑓 : ℝ → ℂ vérifiant

∃(𝑎0,…, 𝑎𝑛) ∈ ℂ𝑛+1, ∃(𝑏1,…, 𝑏𝑛) ∈ ℂ𝑛, ∀𝑡 ∈ ℝ, 𝑓(𝑡) = 𝑎0 +
𝑛
∑
𝑘=1
(𝑎𝑘 cos(𝑘𝑡) + 𝑏𝑘 sin(𝑘𝑡)).

On remarque que les éléments de 𝒮𝑛 sont des fonctions bornées ;
— si 𝐼 est un intervalle non vide de ℝ et si 𝑓 est une fonction bornée de 𝐼 dans ℂ, on note

‖𝑓‖𝐿∞(𝐼) = sup
𝑥∈𝐼
|𝑓(𝑥)|.

On admet que 𝑓 ↦ ‖𝑓‖𝐿∞(𝐼) définit une norme sur le ℂ-espace vectoriel des fonctions bornées de 𝐼 dans ℂ.

I.A – Polynômes de Tchebychev

On définit la suite de polynômes (𝑇𝑛)𝑛∈ℕ par 𝑇0 = 1, 𝑇1 = 𝑋 et ∀𝑛 ∈ ℕ, 𝑇𝑛+2 = 2𝑋𝑇𝑛+1 − 𝑇𝑛.
Q 1. Pour tout 𝑛 dans ℕ, déterminer le degré de 𝑇𝑛, puis montrer que (𝑇𝑘)0⩽𝑘⩽𝑛 est une base de ℂ𝑛[𝑋].

Q 2. Montrer que, pour tous 𝑛 ∈ ℕ et 𝜃 ∈ ℝ, 𝑇𝑛(cos 𝜃) = cos(𝑛𝜃).
Q 3. En déduire que, pour tous 𝑛 ∈ ℕ et 𝑃 ∈ ℂ𝑛[𝑋], la fonction de ℝ dans ℂ, 𝜃 ↦ 𝑃(cos 𝜃) est dans 𝒮𝑛.
Q 4. Pour 𝑛 ∈ ℕ, calculer ‖𝑇𝑛‖𝐿∞([−1,1]).

Q 5. Montrer que, pour tout 𝑛 ∈ ℕ, ‖𝑇 ′𝑛‖𝐿∞([−1,1]) = 𝑛
2.

On pourra commencer par établir que, pour tous 𝑛 ∈ ℕ et 𝜃 ∈ ℝ, |sin(𝑛𝜃)| ⩽ 𝑛|sin 𝜃|.

I.B – Inégalité de Bernstein

Soit 𝑛 un entier naturel non nul.
Q 6. Soit 𝐴 ∈ ℂ2𝑛[𝑋], scindé à racines simples, et (𝛼1,…, 𝛼2𝑛) ses racines. Montrer que

∀𝐵 ∈ ℂ2𝑛−1[𝑋], 𝐵(𝑋) =
2𝑛
∑
𝑘=1

𝐵(𝛼𝑘)
𝐴(𝑋)

(𝑋 − 𝛼𝑘)𝐴′(𝛼𝑘)
. (I.1)

Soit 𝑃 dans ℂ2𝑛[𝑋], et, pour tout 𝜆 ∈ ℂ, 𝑃𝜆(𝑋) = 𝑃(𝜆𝑋) − 𝑃(𝜆).
Q 7. Si 𝜆 ∈ ℂ, vérifier que 𝑋 − 1 divise 𝑃𝜆.
Pour tout 𝜆 dans ℂ, on note 𝑄𝜆 le quotient de 𝑃𝜆 par 𝑋 − 1 :

𝑄𝜆(𝑋) =
𝑃(𝜆𝑋) − 𝑃(𝜆)

𝑋 − 1
∈ ℂ2𝑛−1[𝑋].
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Q 8. Montrer que, pour tout 𝜆 dans ℂ, 𝑄𝜆(1) = 𝜆𝑃′(𝜆).

On considère le polynôme 𝑅(𝑋) = 𝑋2𝑛 + 1. Pour 𝑘 dans ⟦1, 2𝑛⟧, on note 𝜑𝑘 =
𝜋
2𝑛
+ 𝑘𝜋
𝑛

et 𝜔𝑘 = ei𝜑𝑘 .

Q 9. Montrer que

𝑅(𝑋) =
2𝑛
∏
𝑘=1
(𝑋 − 𝜔𝑘).

Q 10. À l’aide de la formule (I.1), montrer que

∀𝜆 ∈ ℂ, 𝑄𝜆(𝑋) = −
1
2𝑛

2𝑛
∑
𝑘=1

𝑃(𝜆𝜔𝑘) − 𝑃(𝜆)
𝜔𝑘 − 1

𝑋2𝑛 + 1
𝑋 − 𝜔𝑘

𝜔𝑘

puis en déduire que

∀𝜆 ∈ ℂ, 𝜆𝑃 ′(𝜆) = 1
2𝑛

2𝑛
∑
𝑘=1

𝑃(𝜆𝜔𝑘)
2𝜔𝑘

(1 − 𝜔𝑘)2
− 𝑃(𝜆)

2𝑛

2𝑛
∑
𝑘=1

2𝜔𝑘
(1 − 𝜔𝑘)2

. (I.2)

Q 11. Montrer que

∀𝜆 ∈ ℂ, 𝜆𝑃 ′(𝜆) = 1
2𝑛

2𝑛
∑
𝑘=1

𝑃(𝜆𝜔𝑘)
2𝜔𝑘

(1 − 𝜔𝑘)2
+ 𝑛𝑃(𝜆).

On pourra appliquer l’égalité (I.2) au polynôme 𝑋2𝑛.
Soit maintenant 𝑓 dans 𝒮𝑛.
Q 12. Montrer qu’il existe 𝑈 ∈ ℂ2𝑛[𝑋] tel que, pour tout 𝜃 ∈ ℝ, 𝑓(𝜃) = e−i𝑛𝜃𝑈(ei𝜃).

Q 13. Vérifier que, pour tout 𝑘 ∈ ⟦1, 2𝑛⟧, 2𝜔𝑘
(1 − 𝜔𝑘)2

= −1
2 sin(𝜑𝑘/2)2

et déduire des questions 11 et 12 que

∀𝜃 ∈ ℝ, 𝑓′(𝜃) = 1
2𝑛

2𝑛
∑
𝑘=1

𝑓(𝜃 + 𝜑𝑘)
(−1)𝑘

2 sin(𝜑𝑘/2)2
. (I.3)

Q 14. En déduire que

∀𝜃 ∈ ℝ, |𝑓′(𝜃)| ⩽ 𝑛‖𝑓‖𝐿∞(ℝ). (I.4)

I.C – Quelques conséquences de l’inégalité (I.4)

Soit 𝑛 un entier naturel non nul.
Q 15. Déduire des questions 3 et 14 que

∀𝑃 ∈ ℂ𝑛[𝑋], ∀𝑥 ∈ [−1, 1], ∣𝑃 ′(𝑥)√1 − 𝑥2∣ ⩽ 𝑛‖𝑃‖𝐿∞([−1,1]).

Q 16. Montrer que

∀𝑄 ∈ ℂ𝑛−1[𝑋], |𝑄(1)| ⩽ 𝑛 sup
−1⩽𝑥⩽1

∣𝑄(𝑥)√1 − 𝑥2∣ .

On pourra considérer 𝑓 : 𝜃 ↦ 𝑄(cos 𝜃) sin 𝜃 et vérifier que 𝑓 ∈ 𝒮𝑛.
Q 17. Soit 𝑅 ∈ ℂ𝑛−1[𝑋] et 𝑡 ∈ [−1, 1]. Montrer que

|𝑅(𝑡)| ⩽ 𝑛 sup
−1⩽𝑥⩽1

∣𝑅(𝑥)√1 − 𝑥2∣ .

On pourra considérer le polynôme 𝑆𝑡(𝑋) = 𝑅(𝑡𝑋).
Q 18. En déduire que, pour tout 𝑃 dans ℂ𝑛[𝑋],

‖𝑃 ′‖𝐿∞([−1,1]) ⩽ 𝑛2‖𝑃 ‖𝐿∞([−1,1]).

Q 19. Peut-il y avoir égalité dans l’inégalité précédente ?
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Centrale MP 2021 : épreuve 2
Un corrigé

I. Inégalité polynomiale de Bernstein et applications.

I.A - Polynômes de Tchebychev

1. On montre par récurrence que ∀n ∈ N, deg(Tn) = n .

- C’est vrai aux rang 0 et 1.

- Supposons le résultat vrai jusqu’à un rang n ≥ 1. On a alors Tn+1 = 2XTn − Tn−1 qui est
somme de deux polynômes de degrés n+1 et n−1. Comme ces degrés sont différents, Tn+1

est de degré max(n+ 1, n− 1) = n+ 1.

(Tk)0≤k≤n étant échelonnée en degré est libre. Elle contient n+ 1 éléments de Cn[X] qui est de
dimension n+ 1. Ainsi,

(Tk)0≤k≤n est une base de Cn[X]

2. Procédons encore par récurrence.

- C’est vrai aux rang 0 et 1.

- Supposons le résultat vrai jusqu’à un rang n ≥ 1. On a alors

Tn+1(cos(θ)) = 2 cos(θ)Tn(cos(θ) + Tn−1(cos(θ)) = 2 cos(θ) cos(nθ)− cos((n− 1)θ)

Comme 2 cos(a) cos(b) = cos(a− b) + cos(a+ b), le résultat au rang n+ 1 s’en déduit.

∀n ∈ N, ∀θ ∈ R, Tn(cos(θ)) = cos(nθ)

3. Comme Sn est un espace-vectoriel, il suffit de prouver le résultat pour les éléments d’une base
de Cn[X] (et de conclure par combinaisons linéaires). Or, la question précédente prouve l’appar-
tenance pour les éléments de la base (T0, . . . , Tn). Ainsi

∀n ∈ N, ∀P ∈ Cn[X], θ 7→ P (cos(θ)) ∈ Sn

4. Quand θ varie dans R, cos(θ) décrit tout [−1, 1]. Ainsi la norme infinie de Tn sur [−1, 1] est celle
de θ 7→ Tn(cos(θ)) sur R. Celle-ci vaut clairement 1 (puisque |Tn(cos(θ))| = | cos(nθ)| ≤ 1 avec
égalité si θ = 0).

∀n ∈ N, ‖Tn‖L∞([−1,1]) = 1

5. Prouvons par récurrence sur n que

∀θ ∈ R, | sin(nθ)| ≤ n| sin(θ)|

- C’est immédiat au rang 0 .

- Supposons le résultat vrai jusqu’à un rang n ≥ 0. On a alors, pour tout réel θ,

| sin((n+ 1)θ)| ≤ | sin(nθ) cos(θ)|+ | sin(θ) cos(nθ)| ≤ | sin(nθ)|+ | sin(θ)| ≤ (n+ 1)| sin(θ)|

et le résultat est vrai au rang n+ 1.
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Par ailleurs, en dérivant la relation Tn(cos(θ)) = cos(nθ), on obtient

∀θ ∈ R, − sin(θ)T ′n(cos(θ)) = −n sin(nθ)

En combinant ceci,
∀θ ∈ R, | sin(θ)T ′n(cos(θ))| ≤ n2| sin(θ)|

On en déduiit que si θ 6= 0[π], |T ′n(cos(θ))| ≤ n2. Par continuité de θ 7→ T ′n(cos(θ)), ceci reste
vrai sur R.
La norme infinie de T ′n sur [−1, 1] est donc plus petite que n2.
En utilisant une expression précédente, on a

∀θ ∈]0, π/2], |T ′n(cos(θ))| = n
| sin(nθ)|

sin(θ)
∼

θ→0+
n
nθ

θ
= n2

et ainsi (continuité) |T ′n(0)| = n2. On a donc

∀n ∈ N, ‖T ′n‖L∞([−1,1)) = n2

I.B - Inégalité de Bernstein

6. Par hypothèse, et en notant c le coefficient dominant de A,

A = c
2n∏
j=1

(X − αj)

On en déduit que

A′ = c
2n∑
k=1

∏
1≤j≤2n

j 6=k

(X − αj)

et en particulier

A′(αk) = c
∏

1≤j≤2n

j 6=k

(αk − αj)

Posons Lk = A(X)
(X−αk)A′(αk)

. Lk ∈ C2n−1[X] et on a (immédiat si j 6= k et calcul précédent si

j = k)
Lk(αj) = δj,k

En particulier, B −
∑2n

k=1B(αk)Lk est nul en tous les αj . Quans B ∈ C2n−1[X], c’est un
polynôme de degré ≤ 2n− 1 qui est donc nul (puisqu”il a au moins 2n racine).

∀B ∈ C2n−1[X], B(X) =

2n∑
k=1

B (αk)
A(X)

(X − αk)A′ (αk)

On peut aussi utiliser la décomposition en éléments simple de B
A , particulièrement aisée puisque

les pôles sont simples.

7. On a Pλ(1) = 0 et donc (X − 1) divise Pλ .

8. On fixe λ ∈ C. Les deux membres de l’égalité à prouver étant des expressions linéaires vis à vis
de P , il suffit de vérifier la formule pour des P formant une base de C2n[X], par exemple les Xk.
Or,

(λX)k − λk

X − 1
= λk(Xk−1 +Xk−2 + · · ·+ 1)

et la valeur en 1 est kλk, qui est bien λ(kλk−1).

2



∀λ ∈ C, Qλ(1) = λP ′(λ)

9. On remarque tout d’abord que
R(ωk) = e2inϕk + 1 = 0

et ωk est racine de R. De plus

ϕk − ϕ` = (k − `)π
n

Si k, ` ∈ [[1, 2n]], −2n < k − ` < 2n et donc ϕk − ϕ` ∈]− 2π, 2π[ n’est nul que si k = `.
On a ainsi 2n racines différentes pour R unitaire de degré 2n et donc

R(X) =
2n∏
k=1

(X − ωk)

10. Si on applique (I.1) avec A = R et αk = ωk (qui sont bien distincts), on obtient, compte-tenu
de R′(ωk) = 2nω2n−1

k = − 2n
ωk

(puisque ω2n
k = −1)

B(X) = − 1

2n

2n∑
k=1

B(ωk)R(X)

X − ωk
ωk

Ceci est vrai pour B ∈ C2n−1[X] et en particulier pour Qλ. Comme les ωk sont différents de 1,
l’expression de Qλ donne alors

∀λ ∈ C, Qλ(X) = − 1

2n

2n∑
k=1

P (λωk)− P (λ)

ωk − 1

X2n + 1

X − ωk
ωk

Appliquons cette formule en λ = 1. Avec la question 8, on a alors

λP ′(λ) = − 1

2n

2n∑
k=1

P (λωk)− P (λ)

ωk − 1

2

1− ωk
ωk

Il reste à couper la somme en deux pour conclure que

∀λ ∈ C, λP ′(λ) =
1

2n

2n∑
k=1

P (λωk)
2ωk

(1− ωk)2
− P (λ)

2n

2n∑
k=1

2ωk

(1− ωk)2

11. (I.2) avec P = X2n donne,

2nλ2n = − 1

2n

2n∑
k=1

2λ2nωk

(1− ωk)2
− λ2n

2n

2n∑
k=1

2ωk

(1− ωk)2
= −λ

2n

n

2n∑
k=1

2ωk
(1− ωk)2

On en déduit que

1

2n

2n∑
k=1

2ωk
(1− ωk)2

= −n

ce qui permet, après multiplication par P (λ) de réécrire le second terme de (II.2) et de conclure
que

∀λ ∈ C, λP ′(λ) =
1

2n

2n∑
k=1

P (λωk)
2ωk

(1− ωk)2
+ nP (λ)
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12. Soit f ∈ Sn. Il lui est associé une suite (ak)0≤k≤n et une suite (bk)1≤k≤n. Avec les formules
d’Euler, on a

f(t) = a0 +
n∑
k=1

(
ak − ibk

2
eikt +

ak + ibk
2

e−ikt
)

= e−int

(
a0e

int +
n∑
k=1

(
ak − ibk

2
ei(k+n)t +

ak + ibk
2

ei(n−k)kt
))

Si on pose

U(X) = a0X
n +

n∑
k=1

(
ak − ibk

2
Xk+n +

ak + ibk
2

Xn−k
)

on obtient un élément de C2n[X] tel que f(t) = e−intU(eit).

∃U ∈ C2n[X], ∀θ ∈ R, f(θ) = e−inθU
(
eiθ
)

13. On a 1− ωk = eiϕk/2(e−iϕk/2 − eiϕk/2) = −2ieiϕk/2 sin(ϕk/2) et ainsi

2ωk
(1− ωk)2

=
2eiϕk

−4eiϕk sin(ϕk/2)2
=

−1

2 sin(ϕk/2)2

Appliquons la question 11 au polynôme U . Avec l’expression ci-dessus, on obtient

λU ′(λ) = − 1

2n

2n∑
k=1

U (λωk)
1

2 sin(ϕk/2)2
+ nU(λ)

En particulier, pour λ = eit, on obtient (puisque f ′(t) = −inf(t) + ie−inteitU ′(eit))

−ieint(f ′(t) + inf(t)) = − 1

2n

2n∑
k=1

U
(
ei(t+ϕk)

) 1

2 sin(ϕk/2)2
+ nU(eit)

= − 1

2n

2n∑
k=1

ein(t+ϕk)f(t+ ϕk)
1

2 sin(ϕk/2)2
+ neintf(t)

Comme einϕk = i(−1)k, on conclut que

−if ′(t) = − 1

2n

2n∑
k=1

i(−1)kf(t+ ϕk)
1

2 sin(ϕk/2)2

On a montré que

∀θ ∈ R, f ′(θ) =
1

2n

2n∑
k=1

f (θ + ϕk)
(−1)k

2 sin (ϕk/2)2

14. D’après la question 11 avec P = 1, on a

1

2n

2n∑
k=1

2ωk
(1− ωk)2

= −n

et avec la question 13, on en déduit que

1

2n

2n∑
k=1

1

2 sin (ϕk/2)2
= n

4


