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B. Variables aléatoires sous-gaussiennes

Dans toute la suite du probleme, toutes les variables aléatoires considérées sont
réelles et discretes, définies sur un espace probabilisé (£2, 7, P) . Soita > 0. On
dit que la variable aléatoire X est a -sous-gaussienne si :

2
VieR, E[exp(r){)]ﬁexp(g :

exp(t) +exp(—1)
- :

On rappelle la notation : ch(¢) =

.

8) Montrer que pourtout f € R,onach(t) exp(?). On pourra au préalable
établir le développement de la fonction ch en série entiére sur R.

9) Soit t € R. Démontrer que si x € [—1,1], on a I'inégalité de convexité :

+ X 1—-X
exp(r) +

exp(tx) = 1 exp(—1).

10) Soit X une variable aléatoire réelle bornée par 1 et centrée. Montrer que
X est 1-sous-gaussienne. En déduire que, si X est une variable aléatoire
bornée par a > 0 et centrée, alors elle est a-sous-gaussienne.

11) Soit X,,..., X, des variables aléatoires mutuellement indépendantes et a-
sous-gaussiennes, et yu,,..., 4, des nombres réels tels que E,:‘z 1 ()% = 1.

/
Montrer que la variable aléatoire Z pi X est a-sous-gaussienne.
i=1



12) Soit X une variable aléatoire a-sous-gaussienne et A > 0. Montrer que
pourtout r>0:

a‘t®
P(X2A)< exp[T - A
En déduire que :
112
P(XI> A) < 2exp(--—].

Dans la suite du probléme, on admet qu'une variable aléatoire X a valeurs
dans N est d’espérance finie si et seulement si la série }_ P(X = k) converge et
que, dans ce cas :

+00
k=1

13) Si X est une variable aléatoire a valeurs dans R*, montrer que X est
d’espérance finie si et seulement si la série de terme général P(X = k)
converge et que, dans ce cas :

+00 +00
Y P(Xzk)<E(X)<1+ ) P(X=k).
k=1 k=1

On pourra pour cela considérer la partie entiere | X].

+00
Pour tout s €1, +o00[, on note {(s) = Z T
=1

14) Soit X une variable aléatoire a-sous-gaussienne et > 0. Montrer que
pout tout entier k > 0 :

P(exp(ﬂzzxz) = k) R

ol1 on a posé n = a 2f 2. En déduire que si ap < 1, la variable aléatoire
2 2
exp( %) est d’espérance finie majorée par 1+ 2{(n).

Fin extrait



B. Variables aléatoires sous-gaussiennes

Dans toute la suite du probleme, toutes les variables aléatoires considérées sont
réelles et discretes, définies sur un espace probabilisé ({2, ¢/, P) . Soit a > 0. On
dit que la variable aléatoire X est a-sous-gaussienne si :

3.
VieR, E(exp(tX)) ﬁexp(a; ]

i+ -
On rappelle la notation : ch() = i) zexp( ).
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8) Montrer que pour tout f € R, on a ch(?) < exp(;). On pourra au préalable

établir le développement de la fonction ch en série entiere sur R.
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9) Soit r € R. Démontrer que si x € [—1,1], on a l'inégalité de convexité :

exp(fx) < 2xexp(r) + lgxexp(— [).
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10) Soit X une variable aléatoire réelle bornée par 1 et centrée. Montrer que
X est 1-sous-gaussienne. En déduire que, si X est une variable aléatoire
bornée par a > 0 et centrée, alors elle est a-sous-gaussienne.
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Soita >0.0On

dit que la variable aléatoire X est a -sous-gaussienne si :

2
VIER, E[exp{tX)]‘exp(u).
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L) En déduire que, si X est une variable aléatoire
bornée par a > 0 et centrée, alors elle est a-sous-gaussienne.




11) Soit Xj,..., X, des variables aléatoires mutuellement indépendantes et a-
sous-gaussiennes, et ui,..., 1, des nombres réels tels que Z?zl (u )% =1.

n
Montrer que la variable aléatoire Z i X; est a-sous-gaussienne.
i=1
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lo) En déduire que:
/12
P(X|=A) < 2exp(—272-).
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Dans la suite du probleme, on admet qu'une variable aléatoire X a valeurs
dans N est d’espérance finie si et seulement si la série }_ P(X = k) converge et
que, dans ce cas:

+00
E(X)=) P(X=k).
k=1

13) Si X est une variable aléatoire a valeurs dans R*, montrer que X est
d’espérance finie si et seulement si la série de terme général P(X = k)
converge et que, dans ce cas:

+00 +00
Y PXz2k<EX)<1+) P(X=k.
k=1 k=1

On pourra pour cela considérer la partie entiere | X|.
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+00 +00
Y P(Xzk)<E(X)<1+ ) P(X=k).
k=1 k=1

(One | x ) X L Lx)+1
=, IZE(L x1) L EMDL g(Lx))+ 1

o v G (Lx)yt) = (x)t)

+00 +00
Y P(Xzk)<EX)<1+ ) P(X=k).
k=1 k=1
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