
Corrigé CCP MP 2016 - Math I

PROBLÈME : Fonction Digamma.

Partie préliminaire

III.1.

a. Soit x > 0. La fonction hx : t 7→ e−ttx−1 est continue sur ]0,+∞[ par produit de fonctions
continues, les fonctions exponentielle et puissances étant bien continues sur ]0,+∞[.
On a hx(t) ∼

t→0+
tx−1 = 1

t1−x avec 1−x < 1 et t2 e−ttx−1 = tx+1e−t −→
t→+∞

0 par croissance

comparée, d’où hx(t) = o
t→+∞

(
1
t2

)
.

Ainsi, par comparaison de fonctions positives et critère de Riemann en 0 et en +∞,
hx : t 7→ e−ttx−1 est intégrable sur ]0,+∞[.

On peut ainsi définir la fameuse fonction Gamma d’Euler Γ : x 7→
∫ +∞

0
e−ttx−1dt,

sur ]0,+∞[.

b. Soit x > 0. La fonction hx définie dans la question précédente est continue et stricte-
ment positive sur ]0,+∞[. La positivité de l’intégrale nous donne

∫ +∞
0 hx(t)dt ≥ 0 et

la continuité de hx implique qu’on ne pourrait avoir
∫ +∞

0 hx(t)dt = 0 que si hx était
identiquement nulle sur ]0,+∞[, ce qui n’est pas le cas.
Ainsi Γ(x) =

∫ +∞
0 hx(t)dt > 0, et ce pour tout x > 0.

c. On définit h :
{

R∗+ × R∗+ −→ R
(x, t) 7−→ hx(t) = e−ttx−1 .

– Pour tout t > 0, x 7→ h(x, t) est de classe C1 (et même C∞ en fait) sur R∗+. On a donc

l’existence de
∂h

∂x
sur tout (R∗+)2 et, pour tout t > 0, la continuité de x 7→ ∂h

∂x
(x, t) sur

R∗+.

Notons d’ailleurs qu’on a, pour tout (x, t) ∈ (R∗+)2,
∂h

∂x
(x, t) = ln(t)e−ttx−1.

– Pour tout x > 0, t 7→ ∂h

∂x
(x, t) est continue (donc continue par morceaux) sur R∗+.

– Soit [a, b] un segment de R∗+. On a donc 0 < a ≤ b.

∀(x, t) ∈ [a, b]× R∗+,
∣∣∣∣∂h∂x(x, t)

∣∣∣∣ ≤ { | ln(t)|e−tta−1 si t ≤ 1
ln(t)e−ttb−1 si t > 1 .

Notons donc ϕ la fonction définie sur R∗+ par ϕ(t) =
{
| ln(t)|e−tta−1 si t ≤ 1
ln(t)e−ttb−1 si t > 1 . Cette

fonction est continue par morceaux (et même continue en fait).
De plus, pour t > 1, on a t2ϕ(t) = t1+b ln(t)e−t, donc t2ϕ(t) −→

t→+∞
0 par croissance

comparée, d’où ϕ(t) = o
t→+∞

(
1
t2

)
. Et, pour t ∈]0, 1], on a t1−

a
2ϕ(t) = t

a
2 | ln(t)|e−t −→

t→0+

0 (toujours par croissance comparée, car a > 0), donc ϕ(t) = o
t→0+

(
1

t1−
a
2

)
, avec 1− a

2 <
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1.
Donc ϕ est intégrable sur ]0,+∞[.
On en déduit l’hypothèse de domination sur tous les segments de ]0,+∞[.

Cela prouve finalement que Γ est de classe C1 sur ]0,+∞[, donc dérivable, avec :

∀x > 0, Γ′(x) =
∫ +∞

0

∂h

∂x
(x, t)dt =

∫ +∞

0
ln(t)e−ttx−1dt.

III.2. Pour tout entier n ≥ 2, on pose un =
∫ n

n−1

1
t
dt− 1

n
.

a. Notons f :
{

[1,+∞[ −→ R
t 7−→ 1

t

. Comme la fonction f est continue (donc continue par

morceaux), décroissante et à valeurs positives, un théorème du cours indique que la série∑
n≥2

(∫ n
n−1 f(t)dt− f(n)

)
converge, c’est-à-dire que

∑
n≥2

un converge.

b. Pour tout entier n ≥ 1, on pose Hn =
(

n∑
k=1

1
k

)
− ln(n).

Pour n ≥ 2, on a
n∑
k=2

uk =
∫ n

1
dt
t −

n∑
k=2

1
k par relation de Chasles, d’où

n∑
k=2

uk = ln(n) + 1−
n∑
k=1

1
k = 1−Hn.

Comme la suite
(

n∑
k=2

uk

)
n≥2

converge par la question précédente, il s’ensuit que la suite

(Hn)n≥1 converge.

On note dans la suite γ = lim
n→+∞

Hn, et on définit la fonction Digamma ψ, pour x ∈

]0,+∞[, par ψ(x) = Γ′(x)
Γ(x) .

Expression de la fonction Digamma à l’aide d’une série

III.3. Pour x ∈]0,+∞[ et pour tout entier n ≥ 1, on définit la fonction fn sur ]0,+∞[ par :

fn : t 7→
{ (

1− t
n

)n
tx−1 si t ∈]0, n]

0 si t > n
.

a. On peut établir l’inégalité souhaitée par simple étude de la fonction x 7→ ln(1−x)+x sur
]−∞, 1[, ou bien par un argument de convexité : en effet la fonction ln est notoirement
concave sur R∗+, donc son graphe est au-dessous de chacune de ses tangentes. Comme la
tangente en x = 1 a pour équation y = x − 1, on en déduit : ∀x ∈ R∗+, ln(x) ≤ x − 1. Il
vient ensuite, via deux changements de variable successifs : ∀x > −1, ln(1 + x) ≤ x, puis
∀x < 1, ln(1− x) ≤ −x.

Ensuite, soit n ≥ 1 (et, normalement, x > 0 est déjà fixé aussi dès l’énoncé de la question
III.3.). La fonction fn est positive par définition.
De plus, pour tout t ∈]0, n[, fn(t) = en ln(1− t

n)tx−1, avec ln
(
1− t

n

)
≤ − t

n par la question
précédente, vu qu’on a bien t

n < 1 pour t ∈]0, n[. On en déduit, par croissance de l’expo-

nentielle et produit par une quantité positive : fn(t) ≤ en×(− t
n)tx−1 = e−ttx−1. Enfin fn

est nulle sur [n,+∞[, tandis que la fonction t 7→ e−ttx−1 y est positive, d’où finalement
l’encadrement :

∀t > 0, 0 ≤ fn(t) ≤ e−ttx−1.

b. Comme demandé, on applique le théorème de convergence dominée :
– Pour tout n ≥ 1, fn est continue par morceaux sur R∗+.
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– Soit t > 0. Il existe N ∈ N tel que N ≥ t, par exemple N = btc + 1. Alors, pour
tout n ≥ N , t ∈]0, n], et donc fn(t) =

(
1− t

n

)n
tx−1. Or,

(
1− t

n

)n = en ln(1− t
n), et

ln
(
1− t

n

)
= − t

n + o
(

1
n

)
, donc

(
1− t

n

)n = en(−
t
n

+o( 1
n)) = e−t+o(1) −→

n→+∞
e−t par

continuité de l’exponentielle. Donc fn(t) −→
n→+∞

e−ttx−1.

On a ainsi prouvé que (fn)n≥1 converge simplement sur R∗+ vers la fonction t 7→ e−ttx−1.
– De plus, pour tout n ≥ 1 et pour tout t > 0, |fn(t)| ≤ e−ttx−1 par la question

précédente, et on a prouvé dans la première question du problème que la fonction
t 7→ e−ttx−1 est (continue bien sûr et) intégrable sur R∗+.

Donc, par le théorème de convergence dominée,
∫ +∞

0
fn(t)dt −→

n→+∞

∫ +∞

0
e−ttx−1dt.

Comme fn est nulle sur [n,+∞[, cela donne finalement :∫ n

0

(
1− t

n

)n
tx−1dt −→

n→+∞
Γ(x),

et ce raisonnement a bien été mené pour tout x > 0.

III.4. Pour tout entier naturel n et tout x > 0, on pose In(x) =
∫ 1

0
(1− u)nux−1du.

a. Soient n ∈ N∗ et x > 0.
La fonction α : u 7→ (1− u)nux−1 est bien définie et continue sur ]0, 1].
De plus, α(u) ∼

u→0+
ux−1 = 1

u1−x , avec 1 − x < 1, donc α est intégrable sur ]0, 1] par

comparaison de fonctions positives et critère de Riemann.
Cela assure la bonne définition de In(x).
On définit maintenant sur ]0, 1] les fonctions α1 : u 7→ (1 − u)n et α2 : u 7→ ux

x . Ces
fonctions sont de classe C1, et on a α1(u)α2(u) qui admet une limite finie pour u −→ 0+,
en l’occurrence 0. On en déduit, par intégration par parties :

In(x) =
∫ 1

0
α1(u)α′2(u)du = α1(1)α2(1)− lim

u→0+
α1(u)α2(u)−

∫ 1

0
α′1(u)α2(u)du

= 0− 0 +
n

x

∫ 1

0
(1− u)n−1uxdu =

n

x
In−1(x+ 1).

b. Soit x > 0.
On a I0(x) =

∫ 1
0 u

x−1du =
[
ux

x

]1
0

= 1
x .

Soit n ≥ 1. On a, par une récurrence immédiate,
In(x) = n

xIn−1(x+ 1) = n
x ×

n−1
x+1In−2(x+ 2) = n!

x(x+1)···(x+n−1)I0(x+ n) = n!
x(x+1)···(x+n) .

c. La fonction t 7→ t
n réalise une bijection strictement croissante et de classe C1 de ]0, n] sur

]0, 1]. Via le changement de variable u = t
n , on obtient donc :∫ n

0

(
1− t

n

)n
tx−1dt =

∫ 1

0
(1− u)n(nu)x−1ndu = nx

∫ 1

0
(1− u)nux−1du = nxIn(x).

Le résultat de la question 3.b. se réécrit ainsi : Γ(x) = lim
n→+∞

nxIn(x). Et le calcul de la

question précédente permet de conclure :

Γ(x) = lim
n→+∞

nx × n!
x(x+ 1) · · · (x+ n)

= lim
n→+∞

n!nx
n∏
k=0

(x+ k)
.

Cette relation est appelée formule de Gauss (selon l’énoncé, mais n’est-ce pas plutôt la
formule dite d’Euler dans la littérature ?).

III.5. Soient n ∈ N∗ et x > 0.
L’indication donnée (fallait-il la prouver ?) est immédiate en remarquant qu’on a
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Dérivant cette relation sur R∗+, on obtient :

g′(x) = −Γ′(x)
Γ(x)

− 1
x
− γ,

c’est-à-dire, vu que ψ = Γ′

Γ , ψ(x) = −g′(x)− 1
x − γ.

Comme −g′(x) = −
+∞∑
k=1

(
1

k+x −
1
k

)
=

+∞∑
k=1

(
− 1
k+x + 1

k

)
, on a finalement établi :

∀x > 0, ψ(x) = −1
x
− γ +

+∞∑
k=1

(
1
k
− 1
k + x

)
.

III.7.

a. Posant x = 1 dans la formule précédente, on trouve : ψ(1) = −1 − γ +
+∞∑
k=1

(
1
k −

1
k+1

)
,

d’où, par télescopage, ψ(1) = −1− γ + 1 = −γ.
De plus Γ(1) =

∫ +∞
0 e−tdt = lim

X→+∞
[−e−t]X0 = lim

X→+∞
1 − e−X = 1 donc, vu que

ψ(1) = Γ′(1)
Γ(1) , on obtient Γ′(1) = −γ.

Mais en reprenant l’expression obtenue à la question 1.c., on constate que Γ′(1) =∫ +∞
0 e−t ln(t)dt, d’où finalement :∫ +∞

0
e−t ln(t)dt = −γ.

b. D’après la formule de la question 6.c., on a, pour tout x > 0,

ψ(x+ 1)− ψ(x) = − 1
x+ 1

+
1
x

+
+∞∑
k=1

(
1
k
− 1
k + x+ 1

)
−

+∞∑
k=1

(
1
k
− 1
k + x

)

=
1
x
− 1
x+ 1

+
+∞∑
k=1

(
1
k
− 1
k + x+ 1

− 1
k

+
1

k + x

)
par somme de séries convergentes. Et donc :

ψ(x+ 1)− ψ(x) =
1
x
− 1
x+ 1

+
+∞∑
k=1

(
1

k + x
− 1
k + x+ 1

)
=

+∞∑
k=0

(
1

k + x
− 1
k + x+ 1

)
=

1
x
.

Remarque. On aurait aussi pu procéder ainsi :

ψ(x+ 1)− ψ(x) =
Γ′(x+ 1)
Γ(x+ 1)

− Γ′(x)
Γ(x)

=
d

dx

(
ln
(

Γ(x+ 1)
Γ(x)

))
.

Or, il est bien connu que Γ(x+ 1) = xΓ(x) (il suffit d’intégrer par parties), donc

ψ(x+ 1)− ψ(x) =
d

dx
(ln(x)) =

1
x
.

En particulier, pour tout k ∈ N∗, ψ(k + 1)− ψ(k) = 1
k .

Il s’ensuit, pour tout entier n ≥ 2,

ψ(n) = ψ(1) +
n−1∑
k=1

(
ψ(k + 1)− ψ(k)

)
= −γ +

n−1∑
k=1

1
k
.

c. Soit x > 0 fixé. Pour tout k ∈ N, on définit jk :
{

R∗+ −→ R
y 7−→ 1

k+y+1 −
1

k+y+x
.

Cette notation est discutable : il aurait peut-être été préférable de noter jk,x, pour insister
sur le fait que l’on travaille à x > 0 fixé, et que la convergence uniforme étudiée ici ne
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porte que sur la variable y.
On peut réécrire jk(y) = k+y+x−k−y−1

(k+y+1)(k+y+x) = x−1
(k+y+1)(k+y+x) donc,

∀y > 0, |jk(y)| ≤ |x− 1|
(k + 1)(k + x)

.

Comme
∑
k≥0

|x−1|
(k+1)(k+x) est une série convergente, vu que |x−1|

(k+1)(k+x) ∼
k→+∞

|x−1|
k2 , on a la

convergence normale, donc uniforme, de
∑
k≥0

jk sur ]0,+∞[.

Ensuite, reprenant la formule de 6.c., on a, pour tout n ∈ N∗,

ψ(x+ n)− ψ(1 + n) = − 1
x+ n

+
1
n

+
+∞∑
k=1

(
1
k
− 1
k + x+ n

)
−

+∞∑
k=1

(
1
k
− 1
k + 1 + n

)
,

et selon le même principe de calcul qu’à la question précédente, on aboutit à :

ψ(x+ n)− ψ(1 + n) =
+∞∑
k=0

(
1

k + 1 + n
− 1
k + x+ n

)
=

+∞∑
k=0

jk(n).

Or, pour tout k ∈ N, jk(n) −→
n→+∞

0 donc, par le théorème de la double limite (qui

s’applique ici car la série de fonctions étudiée converge uniformément sur un voisinage de
+∞),

lim
n→+∞

(
ψ(x+ n)− ψ(1 + n)

)
=

+∞∑
k=0

lim
n→+∞

jk(n) = 0.

III.8. Par analyse-synthèse :
– Analyse : Soit f solution. On va montrer que f vérifie la formule de ψ établie en 6.c.,

à savoir :

∀x > 0, f(x) = −1
x
− γ +

+∞∑
k=1

(
1
k
− 1
k + x

)
Puisque 1

t = f(t+ 1)− f(t) pour tout t > 0, on a

+∞∑
k=1

(
1
k
− 1
k + x

)
=

+∞∑
k=1

(
f(k + 1)− f(k)− f(k + x+ 1) + f(k + x)

)

= lim
n→+∞

(
n∑
k=1

(
f(k + 1)− f(k)

)
+

n∑
k=1

(
f(k + x)− f(k + x+ 1)

))

= lim
n→+∞

f(n+ 1)− f(1)︸︷︷︸
=−γ

+f(1 + x)− f(n+ x+ 1)


= f(x+ 1) + γ − lim

n→+∞

(
f(x+ 1 + n)− f(1 + n)

)
︸ ︷︷ ︸

=0

= f(x) +
1
x

+ γ,

ce qui montre bien la relation voulue, et donc f = ψ.
– Synthèse : La seule solution éventuelle au problème est donc ψ. Mais on a prouvé

en 7.a., 7.b. et 7.c. que ψ satisfait les trois conditions voulues, donc finalement ψ est
solution, et c’est la seule.
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