Concours National Commun

ÉPREUVE DE MATHÉMATIQUES 2 Session 2024 - Filière MP

L'usage de tout matériel électronique, y compris la calculatrice, est interdit.

Le sujet de cette épreuve est composé d'un exercice et d'un problème indépendants entre eux.

Durée: 4 beures

Exercice

(Noté 4 points sur 20)

On désigne par $\mathcal{M}_3(\mathbb{R})$ l'espace vectoriel des matrices carrées réelles d'ordre 3. On note $\mathcal{B} = (e_1, e_2, e_3)$ a base canonique de \mathbb{R}^3 et par I_3 la matrice unité de $\mathcal{M}_3(\mathbb{R})$. On considère dans $\mathcal{M}_3(\mathbb{R})$ les matrices suivantes:

$$A = \frac{1}{2} \begin{pmatrix} 3 & -1 & 1 \\ -2 & 2 & 2 \\ -1 & -1 & 5 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \text{ et } Q = \begin{pmatrix} 2 & 2 & -2 \\ -3 & -1 & 5 \\ 1 & -1 & 1 \end{pmatrix}$$

- 1. a) Vérifier que $PQ = 4I_3$.
 - b) En déduire que P est une matrice inversible et calculer sa matrice inverse P^{-1} .
- 2. On considère les vecteurs suivants :

$$u = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ et } w = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

- a) Montrer que u est un vecteur propre de la matrice A dont on précisera la valeur propre α correspondante.
- b) Montrer que v et w sont deux vecteurs propres de la matrice A associés à la même valeur propre β dont on précisera sa valeur.
- c) Montrer qu'il existe une matrice diagonale D à préciser telle que $A = PDP^{-1}$.
- **3.** a) Montrer par récurrence que pour tout entier naturel $n, A^n = PD^nP^{-1}$.
 - b) Déterminer, pour tout entier naturel n, D^n en fonction de n.
 - c) En déduire pour tout entier naturel n, l'expression de A^n en fonction de n sous forme d'un tableau.

Problème.

Dans tout le problème $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , on désigne par E un espace vectoriel sur \mathbb{K} de dimension $n, n \geq 1$ et par $\mathcal{L}(E)$ le \mathbb{K} -espace vectoriel des endomorphismes de E. On note $\mathcal{M}_n(\mathbb{K})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients dans $\mathbb{K}, GL_n(\mathbb{K})$ le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$ et I_n la matrice unité de $\mathcal{M}_n(\mathbb{K})$. Pour $f \in \mathcal{L}(E)$, on note $f^0 = \mathrm{id}_E$ et pour tout entier naturel $k, f^{k+1} = f^k \circ f$ où id_E désigne l'application identité de E. On note $\chi_f(X) = \det(X \mathrm{id}_E - f)$ le polynôme caractéristique de f et on rappelle que $\chi_f(f) = 0$ où 0 désigne l'application nulle de E.

Pour une matrice $M \in \mathcal{M}_n(\mathbb{K})$, on pourra introduire le polynôme caractéristique de M défini par $\chi_M(X) = \det(XI_n - M)$. On dit que f est un endomorphisme nilpotent s'il existe un entier naturel non nul p tel que $f^p = 0$, le plus petit entier naturel non nul p vérifiant cette propriété est appelé indice de nilpotence de f.

Partie 1: Noyaux itérés

Soit $f \in \mathcal{L}(E)$, on note pour tout entier naturel $k, \mathcal{N}_k = \mathrm{Ker}(f^k)$ et $\mathcal{I}_k = \mathrm{Im}(f^k)$.

- 1. Montrer que la suite $(\mathcal{N}_k)_{k\in\mathbb{N}}$ est croissante et que la suite $(\mathcal{I}_k)_{k\in\mathbb{N}}$ est décroissante pour l'inclusion.
- 2. En déduire que $(\dim \mathcal{N}_k)_{k \in \mathbb{N}}$ est une suite croissante d'entiers naturels.
- 3. Justifier l'existence d'un plus petit entier naturel q tel que $\mathcal{N}_q = \mathcal{N}_{q+1}$.
- 4. Montrer que $\mathcal{I}_q = \mathcal{I}_{q+1}$.
- **5.** Montrer que $\mathcal{N}_q \oplus \mathcal{I}_q = E$,
- **6.** On considère pour tout entier naturel k, φ_k la restriction de f a \mathcal{I}_k .
 - a) Montrer que dim $\mathcal{I}_k \dim \mathcal{I}_{k+1} = \dim (\operatorname{Ker}(f) \cap \mathcal{I}_k)$.
 - b) En déduire que la suite $(\dim \mathcal{N}_{k+1} \dim \mathcal{N}_k)_{k \in \mathbb{N}}$ est décroissante.

Partie 2 : Les endomorphismes nilpotents de rang n-1

Soit U une matrice de $\mathcal{M}_n(\mathbb{C})$, de rang n-1. On note u l'endomorphisme de E canoniquement associé a U. $(E=\mathbb{C}^n)$

- 1. Soient r et s deux entiers naturels et v la restriction de u^s à $\text{Im}(u^r)$.
 - a) Vérifier que $\operatorname{Im}(v) = \operatorname{Im}(u^{s+r})$.
 - **b)** Montrer que $Ker(v) \subset Ker(u^s)$.
 - c) Montrer que dim $(\text{Ker}(u^{r+s})) \leq \dim (\text{Ker}(u^r)) + \dim (\text{Ker}(u^s)).$
 - d) En déduire que pour tout entier naturel i, dim $(\text{Ker }(u^i)) \leq i$.
- **2.** On suppose de plus que $U^n = 0$.
 - a) Montrer que pour tout entier i tel que $1 \le i \le n$, dim $(\text{Ker }(u^i)) = i$.
 - b) Montrer que l'indice de nilpotence de u est égal à n.
 - c) En déduire qu'il existe un vecteur e de E tel que $\mathcal{B}_e = (e, u(e), \dots, u^{n-1}(e))$ soit une base de E.
 - d) Ecrire la matrice de u dans la base \mathcal{B}_e .
- **3.** Montrer que deux matrices nilpotentes de $\mathcal{M}_n(\mathbb{C})$ de rang n-1 sont semblables.

Partie 3 : Réduction d'un endomorphisme particulier

Dans cette partie $\mathbb{K}=\mathbb{C}$. Soit f un élément de $\mathcal{L}(E)$ vérifiant $(\mathrm{id}_E,f,\ldots,f^{n-1})$ est libre.

On considère $\chi_f(X) = \prod_{k=1}^p (X - \lambda_k)^{m_k}$ le polynôme caractéristique χ_f de f, où $\lambda_1, \ldots, \lambda_p$ sont les valeurs propres distinctes de f de multiplicités respectives m_1, \ldots, m_p .

Pour tout entier k tel que $1 \le k \le p$, on pose $F_k = \operatorname{Ker} ((f - \lambda_k \operatorname{id}_E)^{m_k})$

1. Montrer que, pour tout entier k tel que $1 \le k \le p$, le sous-espace vectoriel F_k est stable par f.

- **2.** Montrer que $E = F_1 \oplus \ldots \oplus F_p$.
- **3.** Pour tout entier k tel que $1 \le k \le p$, on considère l'endomorphisme φ_k de F_k tel que, pour tout $x \in F_k$, $\varphi_k(x) = f(x) \lambda_k x$.
 - a) Montrer que pour tout entier k tel que $1 \le k \le p$, φ_k est un endomorphisme nilpotent de F_k .
 - b) Déterminer, pour tout entier k tel que $1 \le k \le p$, la dimension de F_k .
 - c) Montrer que, pour tout entier k tel que $1 \le k \le p$, l'indice de nilpotence de φ_k est m_k .
- 4. Montrer qu'il existe une base \mathcal{B} de E dans laquelle la matrice de f est diagonale par blocs, tel que chaque bloc

est une matrice de
$$\mathcal{M}_{m_k}(\mathbb{C})$$
 de la forme $A_k = \begin{pmatrix} \lambda_k & 0 & \dots & 0 \\ 1 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & \lambda_k \end{pmatrix}$.

Partie 4: Cycles

Dans cette partie, on prend $\mathbb{K} = \mathbb{C}$. On dit qu'un endomorphisme f de E est cyclique d'ordre un entier naturel non nul p s'il existe x_0 de E vérifiant les conditions :

- $f^p(x_0) = x_0$.
- $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est une famille génératrice de E dont les éléments sont distincts deux a deux.

On dit alors que la famille $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est un p- cycle de f.

- **1.** Soit $(x_0, f(x_0), \ldots, f^{p-1}(x_0))$ un p- cycle de f.
 - a) Montrer que $f^p = id_E$.
 - **b)** Montrer que l'ensemble $F_{x_0} = \{k \in \mathbb{N}^* \mid (x_0, f(x_0), \dots, f^{k-1}(x_0)) \text{ est une famille libre}\}$ admet un maximum noté γ .
 - c) i) Montrer que pour tout entier k tel que $k \geq \gamma$, $f^{k}(x_{0}) \in \text{Vect}(x_{0}, f(x_{0}), \dots, f^{\gamma-1}(x_{0}))$.
 - ii) Montrer que $\gamma = n$.
 - iii) Déterminer le nombre des valeurs propres distinctes de f.
- **2.** Soit $\mathcal{B}_{x_0} = (x_0, f(x_0), \dots, f^{n-1}(x_0))$ un *n*-cycle de f.
 - a) Justifier que \mathcal{B}_{x_0} est une base de E.
 - b) Déterminer la matrice G de l'endomorphisme f dans la base B_{x_0} .
 - c) On pose $\omega = e^{i\frac{2\pi}{n}}$ et pour tout $k \in \mathbb{Z}, \ U_k = \begin{pmatrix} \overline{\omega}^k \\ \overline{\omega}^{2k} \\ \vdots \\ \overline{\omega}^{nk} \end{pmatrix}$, où $\overline{\omega}$ désigne le conjugué de ω .

Pour tout entier k tel que $1 \le k \le n$, vérifier que U_k est un vecteur propre de G associé à une valeur propre α_k à déterminer.

3

- **3.** Soit $M = (m_{k,l})_{1 \leq k,l \leq n}$ de $\mathcal{M}_n(\mathbb{C})$, telle que $m_{k,l} = \overline{\omega}^{kl}$. On note $\overline{M} = (\overline{m}_{k,l})_{1 \leq k,l \leq n}$, où $\overline{m}_{k,l}$ est le conjugué de $m_{k,l}$.
 - a) Calculer $M \overline{M}$.
 - b) En déduire que $M \in GL_n(C)$ et calculer M^{-1}

4. Soit
$$(b_0, b_1, \dots, b_{n-1}) \in \mathbb{C}^n$$
 et $H = \begin{pmatrix} b_0 & b_{n-1} & \dots & b_2 & b_1 \\ b_1 & \ddots & \ddots & & b_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ b_{n-2} & & \ddots & \ddots & \vdots \\ b_{n-1} & b_{n-2} & \dots & b_1 & b_0 \end{pmatrix}$.

- a) Montrer que H est diagonalisable.
- b) Déterminer les valeurs propres de H et une base de \mathbb{C}^n formée de vecteurs propres de H.

Partie 5 : La dimension maximale d'un sous-espace vectoriel des matrices nilpotentes

On note \mathcal{T} le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ des matrices triangulaires supérieures dont la diagonale est composée seulement par des 0. On désigne par $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ et par \mathcal{N} l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{R})$.

- 1. Déterminer la dimension de \mathcal{T} .
- 2. Montrer que toute matrice nilpotente est semblable à une matrice appartenant à \mathcal{T} .
- **3.** Montrer que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{T}$.
- **4.** Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ contenu dans \mathcal{N} telle que $\dim(F) > \frac{n(n-1)}{2}$. Montrer que $\dim(\mathcal{S}_n(\mathbb{R}) \cap F) > 0$.
- 5. En déduire la dimension maximale d'un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ contenu dans \mathcal{N} .

- FIN DE L'ÉPREUVE -

CORRECTION

Exercice

On désigne par $\mathcal{M}_3(\mathbb{R})$ l'espace vectoriel des matrices carrées réelles d'ordre 3. On note $\mathcal{B} = (e_1, e_2, e_3)$ a base canonique de \mathbb{R}^3 et par I_3 la matrice unité de $\mathcal{M}_3(\mathbb{R})$. On considère dans $\mathcal{M}_3(\mathbb{R})$ les matrices suivantes:

$$A = \frac{1}{2} \begin{pmatrix} 3 & -1 & 1 \\ -2 & 2 & 2 \\ -1 & -1 & 5 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \text{ et } Q = \begin{pmatrix} 2 & 2 & -2 \\ -3 & -1 & 5 \\ 1 & -1 & 1 \end{pmatrix}$$

1. a) Vérifier que $PQ = 4I_3$.

Juste faites los Calals.

- 1. a) Vérifier que $PQ = 4I_3$.
 - b) En déduire que P est une matrice inversible et calculer sa matrice inverse P^{-1} .

One
$$P$$
, $\left(\frac{1}{H}Q\right) = I_3$

The Provide of QM $P^{-1} = \frac{1}{H}Q = \frac{1}{H}\begin{pmatrix} \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \end{pmatrix}$

2. On considère les vecteurs suivants :

$$u = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ et } w = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

- a) Montrer que u est un vecteur propre de la matrice A dont on précisera la valeur propre α correspondante.
- b) Montrer que v et w sont deux vecteurs propres de la matrice A associés à la même valeur propre β dont on précisera sa valeur.

2) a)

On tronve que AU=U.

Alors West un rectour propre de A, associé à la valour

propre d=1.

2. On considère les vecteurs suivants :

$$u = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ et } w = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

- a) Montrer que u est un vecteur propre de la matrice A dont on précisera la valeur propre α correspondante.
- b) Montrer que v et w sont deux vecteurs propres de la matrice A associés à la même valeur propre β dont on précisera sa valeur.

On trave que Ad= 20 et AW=2W.

D'ai det no sont deux victeurs propres de A, avociés à la

même Valur propre B = 2.

2. On considère les vecteurs suivants :

$$u = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ et } w = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

- a) Montrer que u est un vecteur propre de la matrice A dont on précisera la valeur propre α correspondante.
- b) Montrer que v et w sont deux vecteurs propres de la matrice A associés à la même valeur propre β dont on précisera sa valeur.
- C) Montrer qu'il existe une matrice diagonale D à préciser telle que $A = PDP^{-1}$.

2)C)
Soit fo 2(1R3) l'andonnorphisme Canoniguement assogé à A.

Ona A=mat(f); B=(e_1e_2e_3) étant le base cononique de IR3.

Stone AU=U $U=\begin{pmatrix} 1\\2\\1 \end{pmatrix}$, alors $f(\mathcal{E}_1)=\mathcal{E}_2$, on $\mathcal{E}_1=(1/2/1)$ \mathcal{E}/\mathcal{R}

De même, and AV = 2V et AW = 2V, où $V = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $W = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

Also $f(\mathcal{E}_2) = 2\mathcal{E}_2 df(\mathcal{E}_3) = 2\mathcal{E}_3$, on $\mathcal{E}_2 = (0,1,1)$, $\mathcal{E}_3 = (2,-2,2)$

On a ainh:

$$\begin{cases}
(\mathcal{E}_{1}) = \mathcal{E}_{1} & \mathcal{E}_{1} = (1/2/1) \\
(\mathcal{E}_{2}) = 2\mathcal{E}_{2} & \mathcal{E}_{2} = (0/1/1) \\
(\mathcal{E}_{3}) = 2\mathcal{E}_{3} & \mathcal{E}_{3} = (2/1/2)
\end{cases}$$

mattel
$$f(\mathcal{E}_1)$$
 $f(\mathcal{E}_2)$ $f(\mathcal{E}_3)$

mattel $f(\mathcal{E}_1)$ $f(\mathcal{E}_2)$ $f(\mathcal{E}_3)$
 $f(\mathcal{E}_1)$ $f(\mathcal{E}_2)$ $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$ $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$ $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal{E}_3)$
 $f(\mathcal$

$$P = P_{B,S} = mat(S) = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}, Car \begin{cases} \mathcal{E}_{2} = (1_{1}2_{1}1) \\ \mathcal{E}_{3} = (2_{1}-2_{1}2) \\ \mathcal{E}_{3} = (2_{1}-2_{1}2) \end{cases}$$

Godin Dua:

$$A = P \mathcal{D} P^{-1}, \text{ on } P = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \text{ et } \mathcal{D} = \text{diag} (1, 2, 2)$$

- 3. a) Montrer par récurrence que pour tout entier naturel $n, A^n = PD^nP^{-1}$.
 - b) Déterminer, pour tout entier naturel n, D^n en fonction de n.

Initialisation & Pour n=0

One
$$A^{\circ} = \overline{L_3}$$
 of $P \mathcal{D}^{\circ} P^{-1} = P \mathcal{L}_3 P^{-1} = \overline{L_3}$

Herediti:

Soit now.

$$= P \mathcal{D}^{n+2} P^{-2}$$

 $= P \mathcal{D}^{n} \mathcal{D} P^{-1}$

- Montrer par récurrence que pour tout entier naturel $n, A^n = PD^nP^{-1}$. 3.
 - **b**) Déterminer, pour tout entier naturel n, D^n en fonction de n.

- 3. a) Montrer par récurrence que pour tout entier naturel $n, A^n = PD^nP^{-1}$.
 - b) Déterminer, pour tout entier naturel n, D^n en fonction de n.
 - c) En déduire pour tout entier naturel n, l'expression de A^n en fonction de n sous forme d'un tableau.

Alors après Célails on a:

$$\forall n \in \mathbb{N}, A^{n} = \frac{1}{2} \begin{pmatrix} 2^{n} + 1 & 1 - 2^{n} & 2^{n} - 1 \\ 2 - 2^{n+1} & 2 & 2 - 2 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 2^{n} + 1 & 2 & 2 - 2 \\ 2 - 2^{n} & 1 - 2^{n} & 3 \times 2^{n} - 1 \end{pmatrix}$$

Fin Exercice

CORRECTION

Problème

Dans tout le problème $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , on désigne par E un espace vectoriel sur \mathbb{K} de dimension $n, n \geq 1$ et par $\mathcal{L}(E)$ le \mathbb{K} -espace vectoriel des endomorphismes de E. On note $\mathcal{M}_n(\mathbb{K})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients dans \mathbb{K} , $GL_n(\mathbb{K})$ le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$ et I_n la matrice unité de $\mathcal{M}_n(\mathbb{K})$. Pour $f \in \mathcal{L}(E)$, on note $f^0 = \mathrm{id}_E$ et pour tout entier naturel $k, f^{k+1} = f^k \circ f$ où id_E désigne l'application identité de E. On note $\chi_f(X) = \det(X \mathrm{id}_E - f)$ le polynôme caractéristique de f et on rappelle que $\chi_f(f) = 0$ où 0 désigne l'application nulle de E.

Pour une matrice $M \in \mathcal{M}_n(\mathbb{K})$, on pourra introduire le polynôme caractéristique de M défini par $\chi_M(X) = \det(XI_n - M)$. On dit que f est un endomorphisme nilpotent s'il existe un entier naturel non nul p tel que $f^p = 0$, le plus petit entier naturel non nul p vérifiant cette propriété est appelé indice de nilpotence de f.

Partie 1: Noyaux itérés

Soit $f \in \mathcal{L}(E)$, on note pour tout entier naturel $k, \mathcal{N}_k = \operatorname{Ker}(f^k)$ et $\mathcal{I}_k = \operatorname{Im}(f^k)$.

1. Montrer que la suite $(\mathcal{N}_k)_{k\in\mathbb{N}}$ est croissante et que la suite $(\mathcal{I}_k)_{k\in\mathbb{N}}$ est décroissante pour l'inclusion.

i) (Nh) LEIN est Gomante?

Soit kow. Mondoons gm. Na CNk+1

Soit 76 E.

RENTE => richer/fle)

$$\Rightarrow f(f^k(a)) = 0$$

Soit kGIN. Mondoon) gm. Ik+1 CIk.

Soit aGE.

 \Rightarrow $\exists t \in E, \pi = \int_{-\infty}^{k+1} (t)$

Soit $f \in \mathcal{L}(E)$, on note pour tout entier naturel $k, \mathcal{N}_k = \operatorname{Ker}(f^k)$ et $\mathcal{I}_k = \operatorname{Im}(f^k)$.

- 1. Montrer que la suite $(\mathcal{N}_k)_{k\in\mathbb{N}}$ est croissante et que la suite $(\mathcal{I}_k)_{k\in\mathbb{N}}$ est décroissante pour l'inclusion.
- 2. En déduire que $(\dim \mathcal{N}_k)_{k \in \mathbb{N}}$ est une suite croissante d'entiers naturels.

Ona: HEEM, Na CNE+1

Doi: (HAtIN, Sim(Nh) & Sim(Nh+1))

=> la duite (din (Mk)) est un duite Cronsante d'enties.

(vu gui: Yhrin, dim(Na) EIN)

Soit $f \in \mathcal{L}(E)$, on note pour tout entier naturel $k, \mathcal{N}_k = \operatorname{Ker}(f^k)$ et $\mathcal{I}_k = \operatorname{Im}(f^k)$.

1. Montrer que la suite $(\mathcal{N}_k)_{k \in \mathbb{N}}$ est croissante et que la suite $(\mathcal{I}_k)_{k \in \mathbb{N}}$ est décroissante pour l'inclusion.

3. Justifier l'existence d'un plus petit entier naturel q tel que $\mathcal{N}_q = \mathcal{N}_{q+1}$.

En déduire que $(\dim \mathcal{N}_k)_{k\in\mathbb{N}}$ est une suite croissante d'entiers naturels.

Il s'agit de justifier sque l'assemble {k\in\left|N_k=N_{k+1}} admet un

plus petit étément.

Pour Cela , il suffit de montrer que {k\in\left|N_k=N_{k+1}} est une portre

non vide de IN.

Rappel

Toute portie non vide de IN admet un plus petit élément.

Raisonnons par l'absurde et supposon que {let IN/N/ =N/+1} = p.

Alos: (HLGIN, N& +NK+1).

 \Rightarrow (then, dim(Nk) $\langle d\tilde{m}(N_{k+1}) \rangle$ (a dim(Nk) $\langle d\tilde{m}(N_{k+1}) \rangle$

 \Rightarrow ($\forall k \in \mathbb{N}$, $\dim(N_{k+1}) - \dim(N_k) > 1$)

Car (dm (Nkt) - dm/Nk)) 61N

Soit new, $\sum_{k=0}^{N-1} \left(\frac{d_{N}(N_{k+1}) - d_{N}(N_{k})}{k} \right) = 1$

 \rightarrow $d\bar{m}(N_n) - d\bar{m}(N_o) > n$

Pr. ELAMIRI www.iamateacher.org

D'où lin d'in (Nn) = + 20	
1>+>	
Ce qui est absurde car la duite (dui(Nn)) us majorie.	
(their, dim(Nn) (dimE)	

Soit $f \in \mathcal{L}(E)$, on note pour tout entier naturel $k, \mathcal{N}_k = \mathrm{Ker}\left(f^k\right)$ et $\mathcal{I}_k = \mathrm{Im}\left(f^k\right)$.

- 1. Montrer que la suite $(\mathcal{N}_k)_{k\in\mathbb{N}}$ est croissante et que la suite $(\mathcal{I}_k)_{k\in\mathbb{N}}$ est décroissante pour l'inclusion.
- 2. En déduire que $(\dim \mathcal{N}_k)_{k\in\mathbb{N}}$ est une suite croissante d'entiers naturels.
- 3. Justifier l'existence d'un plus petit entier naturel q tel que $\mathcal{N}_q = \mathcal{N}_{q+1}$.
- 4. Montrer que $\mathcal{I}_q = \mathcal{I}_{q+1}$.

Ona IgH CIg Slapris 1).

Alors pour montrer que IqH = Iq, il suffit de montrer que dim(IqH)= dim(Iq).

D'après le théorème du rang appliqué à 19 en a:

dim(kerf?) + dim(Imf?) = dimE

Cad: $dim(Ng) + dim(T_g) = dim E$.

On a dusting dim (Ng+1) + dim (Ig+1) = dim E.

 2° $\dim(N_q) + \dim(T_q) = \dim(N_{q_H}) + \dim(T_{q_H})$

Or Ng=NgH , alors dm(Tg) = dim(TgH) CRFD

Soit $f \in \mathcal{L}(E)$, on note pour tout entier naturel $k, \mathcal{N}_k = \mathrm{Ker}(f^k)$ et $\mathcal{I}_k = \mathrm{Im}(f^k)$.

- 1. Montrer que la suite $(\mathcal{N}_k)_{k\in\mathbb{N}}$ est croissante et que la suite $(\mathcal{I}_k)_{k\in\mathbb{N}}$ est décroissante pour l'inclusion.
- **2.** En déduire que $(\dim \mathcal{N}_k)_{k\in\mathbb{N}}$ est une suite croissante d'entiers naturels.
- 3. Justifier l'existence d'un plus petit entier naturel q tel que $\mathcal{N}_q = \mathcal{N}_{q+1}$.
- 4. Montrer que $\mathcal{I}_q = \mathcal{I}_{q+1}$.
- 5. Montrer que $\mathcal{N}_q \oplus \mathcal{I}_q = E$,

Ona don Nq + doni Iq = doin (Imf9) + doin (kerf9) = doin E

d'après le théorème du rang.

Alos il reste à montre que Ng 1 Ig=20}.

Soit alors no Ng) Ig. Mortons que x=0.

76 Ng 7Ig =>) 19(x)=0

 $\Rightarrow f(t) = 0$ $\Rightarrow \pm \epsilon \ker(f^{2q}) = N_{2q}.$

Montons d'autre part que : (Hlay, q, Ne=Nq)

Faisons par recurrence sur le 7,9.

Initialisation: Pour R=9 i Clar évident.

Horedité;

Soit ky, 9. Supposous que No = Ng et montrous que NoH = Ng.

Ona Ng C Nett Car (Na) Coordante.

Montons que Net CNq.

Pr. ELAMIRI

www.iamateacher.org

Soit $f \in \mathcal{L}(E)$, on note pour tout entier naturel $k, \mathcal{N}_k = \mathrm{Ker}(f^k)$ et $\mathcal{I}_k = \mathrm{Im}(f^k)$.

- Montrer que la suite $(\mathcal{N}_k)_{k\in\mathbb{N}}$ est croissante et que la suite $(\mathcal{I}_k)_{k\in\mathbb{N}}$ est décroissante pour l'inclusion.
- **2**. En déduire que $(\dim \mathcal{N}_k)_{k\in\mathbb{N}}$ est une suite croissante d'entiers naturels.
- Justifier l'existence d'un plus petit entier naturel q tel que $\mathcal{N}_q = \mathcal{N}_{q+1}$. 3.
- Montrer que $\mathcal{I}_q = \mathcal{I}_{q+1}$. 4.
- Montrer que $\mathcal{N}_q \oplus \mathcal{I}_q = E$,
- On considère pour tout entier naturel k, φ_k la restriction de f à \mathcal{I}_k .
 - a) Montrer que $\dim \mathcal{I}_k \dim \mathcal{I}_{k+1} = \dim (\operatorname{Ker}(f) \cap \mathcal{I}_k)$.

(UnafiE > E & IxCE.

La restriction de jà Il est:

 $\longrightarrow E$ $\longrightarrow \ell_{k}(x) = f(x)$ Ch: Ih

Aina: PREZ(IKIE)

YXCILI Pera = f(x)

D'après le théorems du rang appliqué so la sons

Dim (ker (p) + Sim (Im (Pe)) = Dim (Ih)

eacher.org

Our Im(Ph) = } Ph(A)/ACIh}

= } f(a) / x E I m/ jk) }

= } f(fk(+)) / + 6 E}

= 3 flet (t) / EGE

www.iamateacher.org

Pr. ELAMIRI

$$= Im(f^{k+1})$$

$$Im(\mathcal{L}_{k}) = I_{k+1}$$

$$ker(\mathcal{L}_{k}) = \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

$$= \{n \in I_{k} / \mathcal{L}_{k} / \mathcal{L}_{k} | n \in I_{k} \}$$

Chinal Real Colling Real Collin

Dim (ker (a) + dim (Im ((a)) = dim (Ih) devicet donc;

 $\dim \mathcal{I}_k - \dim \mathcal{I}_{k+1} = \dim (\operatorname{Ker}(f) \cap \mathcal{I}_k)$

Soit $f \in \mathcal{L}(E)$, on note pour tout entier naturel $k, \mathcal{N}_k = \operatorname{Ker}(f^k)$ et $\mathcal{I}_k = \operatorname{Im}(f^k)$.

- 1. Montrer que la suite $(\mathcal{N}_k)_{k\in\mathbb{N}}$ est croissante et que la suite $(\mathcal{I}_k)_{k\in\mathbb{N}}$ est décroissante pour l'inclusion.
- **2.** En déduire que $(\dim \mathcal{N}_k)_{k\in\mathbb{N}}$ est une suite croissante d'entiers naturels.
- 3. Justifier l'existence d'un plus petit entier naturel q tel que $\mathcal{N}_q = \mathcal{N}_{q+1}$.
- **4.** Montrer que $\mathcal{I}_q = \mathcal{I}_{q+1}$.
- 5. Montrer que $\mathcal{N}_q \oplus \mathcal{I}_q = E$,
- **6.** On considère pour tout entier naturel k, φ_k la restriction de f a \mathcal{I}_k .
 - a) Montrer que $\dim \mathcal{I}_k \dim \mathcal{I}_{k+1} = \dim (\operatorname{Ker}(f) \cap \mathcal{I}_k)$.
 - **b)** En déduire que la suite $(\dim \mathcal{N}_{k+1} \dim \mathcal{N}_k)_{k \in \mathbb{N}}$ est décroissante.

Soit kell. Il s'agit de montror que:

$$\left(dim(N_{k+2}) - dim(N_{k+1}) - (slim(N_{k+1}) - dim N_k) < \circ ?$$

On a:
$$\left(dim(N_{k+2}) - dim(N_{k+1})\right) - \left(slim(N_{k+1}) - dim N_k\right) =$$

$$= \left(n - dim(T_{k+2}) - n + dim(T_{k+1})\right) - \left(n - dim(T_{k+1}) - n + dim T_k\right) < cos due to the simple of the simple o$$

Fin Partie 1

Partie 2 : Les endomorphismes nilpotents de rang n-1

Soit U une matrice de $\mathcal{M}_n(\mathbb{C})$, de rang n-1. On note u l'endomorphisme de E canoniquement associé a U. $(E=\mathbb{C}^n)$

- 1. Soient r et s deux entiers naturels et v la restriction de u^s à $\text{Im } (u^r)$.
 - a) Vérifier que $\operatorname{Im}(v) = \operatorname{Im}(u^{s+r})$.

On a
$$U^{\dagger} \in \mathcal{D}(E)$$
.
 $\forall : \operatorname{Im}(U^{\dagger}) \longrightarrow E$ $2 \text{ la restriction de } U^{S} \stackrel{a}{=} \operatorname{Im}(U^{\dagger})$.
 $\pi \longmapsto \mathcal{N}(a) = U^{S}(n)$

$$Im(V) = \left\{ V(a) / x \in Im(V^{r}) \right\}$$

$$= \left\{ U^{S}(a) / x \in Im(V^{r}) \right\}$$

$$= \left\{ U^{S}(a) / x \in Im(V^{r}) \right\}$$

$$= \left\{ U^{S}(v^{r}(t)) / t \in E \right\}$$

$$= \left\{ U^{r+s}(t) / t \in E \right\}$$

$$= Im(U^{r+s})$$

- 1. Soient r et s deux entiers naturels et v la restriction de u^s à $\text{Im } (u^r)$.
 - a) Vérifier que $\operatorname{Im}(v) = \operatorname{Im}(u^{s+r})$.
 - **b)** Montrer que $Ker(v) \subset Ker(u^s)$.

On a
$$M^{h} \in \mathcal{L}(E)$$
.
 $\mathcal{S} : Im(U^{h}) \longrightarrow E$ i la restriction de M^{s} a $Im(U^{h})$.
 $\pi \longmapsto \mathcal{N}(\pi) = U^{s}(\pi)$
 $= \{\pi \in Im(U^{h}) / V(\pi) = 0\}$
 $= \{\pi \in Im(U^{h}) / \pi \in \ker(U^{s})\}$
 $= Im(U^{h}) \cap \ker(U^{s})$

C ker (US)

- Soient r et s deux entiers naturels et v la restriction de u^s à $\text{Im }(u^r)$.
 - Vérifier que $\operatorname{Im}(v) = \operatorname{Im}(u^{s+r})$.
 - Montrer que $Ker(v) \subset Ker(u^s)$.
 - c) Montrer que dim $(\text{Ker}(u^{r+s})) \leq \dim (\text{Ker}(u^r)) + \dim (\text{Ker}(u^s))$.

Appliquois à le théoreme du mong, on ai,

Dow Sim (Im(Ur)) & Sim (ker (Us)) + Sim(Im(Un+s))

Daprès le théorème du rang ona:

$$\begin{cases} dim\left(Tm(V^{h})\right) = n - dim\left(ker(V^{h})\right) \\ dim\left(Tm(V^{h+s})\right) = n - dim\left(ker(V^{h+s})\right) \end{cases}$$

$$\lim_{s \to \infty} \dim \left(\operatorname{Ker} \left(u^{r+s} \right) \right) \leq \dim \left(\operatorname{Ker} \left(u^{r} \right) \right) + \dim \left(\operatorname{Ker} \left(u^{s} \right) \right)$$

Pr. ELAMIRI

www.iamateacher.org

- 1. Soient r et s deux entiers naturels et v la restriction de u^s à $\text{Im}(u^r)$.
 - a) Vérifier que $\operatorname{Im}(v) = \operatorname{Im}(u^{s+r})$.
 - **b)** Montrer que $Ker(v) \subset Ker(u^s)$.
 - c) Montrer que dim $(\text{Ker}(u^{r+s})) \leq \dim (\text{Ker}(u^r)) + \dim (\text{Ker}(u^s)).$
 - d) En déduire que pour tout entier naturel i, dim $(\text{Ker }(u^i)) \leq i$.

Ferisons pour récontrace sour à EIN.

Imitialisation: Pour i=0.

Horedile :

Soit iEIN. Supposon que dim(ker(vi)) (i.

Montrons dim (ker (Ui+1)) Si+1.

On a ;

dim (ker (vi+1)) & dim (ker (vi)) + dim (ker v) (d'après 1)c)

Ht on a din (ber(vi)) Li, par hypothère de récurrance.

$$= n - (n-1) \quad \left(rg(u) - rg(\bot) - n - 1 \right)$$

dim (ker U) = 1

$$2^{i}$$
 où $din(ker(v^{i+2})) \leq i+1$

Soit U une matrice de $\mathcal{M}_n(\mathbb{C})$, de rang n-1. On note u l'endomorphisme de E canoniquement associé a U. $(E=\mathbb{C}^n)$ Soient r et s deux entiers naturels et v la restriction de u^s à $\text{Im}(u^r)$.

Vérifier que $\operatorname{Im}(v) = \operatorname{Im}(u^{s+r})$.

Montrer que $Ker(v) \subset Ker(u^s)$.

Montrer que dim $(\text{Ker}(u^{r+s})) \leq \dim (\text{Ker}(u^r)) + \dim (\text{Ker}(u^s)).$

En déduire que pour tout entier naturel i, dim $(\text{Ker}(u^i)) \leq i$.

2. On suppose de plus que $U^n = 0$.

a) Montrer que pour tout entier i tel que $1 \le i \le n$, dim $(\text{Ker }(u^i)) = i$.

Montoons por recurrence que: $(\forall 1 \leq i \leq n, dim(ker(U^i)) = i)$

Intialisation: Pour n=n. On a dim (ker(un)) = dim (ker(o)) (un=v car Lun=o) = dim (E) (ke/0)=E)

Horedite:

Soit 2 Li Ln.

Supposons que dim (ke(vi)) =i.

Montrons que din (berlui-1) = i-1.

On a déjà din (kerl vi-1) (i-1, d'après 1) d),

Montrons alors que din (berlui-1) >, i-1.

On a $Slim(ke(v^i)) = Slim(ke(v^{(i-1)+1}))$

L Dim (ber (U1-1)) + dim (ber (U))

ylamateacher.org

Pr. ELAMIRI

H ona: dui (ke (vi)) = i , par hypothèle de récurrance. Olim (ker/v)) = 1 (car 98(v)=n-1 et via le +hm du rang) 2^{n} i $\left(\frac{d^{n}(\ker(v^{i-1}))}{1} + 1 \right)$ Ainh: (der (ber (vi-1)) > i-1)

- 1. Soient r et s deux entiers naturels et v la restriction de u^s à $\text{Im } (u^r)$.
 - a) Vérifier que $\operatorname{Im}(v) = \operatorname{Im}(u^{s+r})$.
 - **b)** Montrer que $Ker(v) \subset Ker(u^s)$.
 - c) Montrer que dim $(\operatorname{Ker}(u^{r+s})) \leq \operatorname{dim}(\operatorname{Ker}(u^r)) + \operatorname{dim}(\operatorname{Ker}(u^s)).$
 - d) En déduire que pour tout entier naturel i, dim $(\text{Ker }(u^i)) \leq i$.
- **2.** On suppose de plus que $U^n = 0$.
 - a) Montrer que pour tout entier i tel que $1 \le i \le n$, dim $\left(\operatorname{Ker}\left(u^{i}\right)\right) = i$.
 - b) Montrer que l'indice de nilpotence de u est égal à n.

It stagit de montrer que
$$(u^n = 0 d u^{n-2} \neq 0)$$

On a $u^n = 0$ $(a \sqcup u^n = 0)$

Of on a $u^n = 0$ $(a \sqcup u^n = 0)$

Of on a $u^n = 0$ $(a \sqcup u^n = 0)$

Of on a $u^n = 0$ $(a \sqcup u^n = 0)$

- 1. Soient r et s deux entiers naturels et v la restriction de u^s à $\text{Im}(u^r)$.
 - a) Vérifier que $\operatorname{Im}(v) = \operatorname{Im}(u^{s+r})$.
 - **b)** Montrer que $Ker(v) \subset Ker(u^s)$.
 - c) Montrer que dim $(\operatorname{Ker}(u^{r+s})) \leq \dim (\operatorname{Ker}(u^r)) + \dim (\operatorname{Ker}(u^s)).$
 - d) En déduire que pour tout entier naturel i, dim $(\text{Ker }(u^i)) \leq i$.
- 2. On suppose de plus que $U^n = 0$.
 - a) Montrer que pour tout entier i tel que $1 \le i \le n$, dim $(\text{Ker }(u^i)) = i$.
 - b) Montrer que l'indice de nilpotence de u est égal à n.
 - c) En déduire qu'il existe un vecteur e de E tel que $\mathcal{B}_e = (e, u(e), \dots, u^{n-1}(e))$ soit une base de E.

On a
$$u^{n-1} + o$$
, alors: $(\exists e \in E, u^{n-1}/e) + o$.

Mortons give $B_e = (e_1 v | e), ..., u^{n-1}/e)$ and $u^n e$ have $A : E$.

On a Card $(B_e) = d \sin (E) (-n)$

Alors it suffit she morker give B_e is libra.

Soint alors $\lambda_{0,1-1}\lambda_{n-1} \in \mathbb{C}$ tells give $\sum_{i=0}^{n-1} u^i(e) = o$.

Moutony give: $(\forall o \leq i \leq n-2, \lambda_{n-0})$.

On a: $\lambda_0 e + \lambda_1 v(e) + - \cdots + \lambda_{n+1} v^{n+1}(e) = o$

Compsion from v^{n-2} , on a:

$$\lambda_0 v^{n-1}(e) + \lambda_1 v^{n-1}(e) + \cdots = o$$

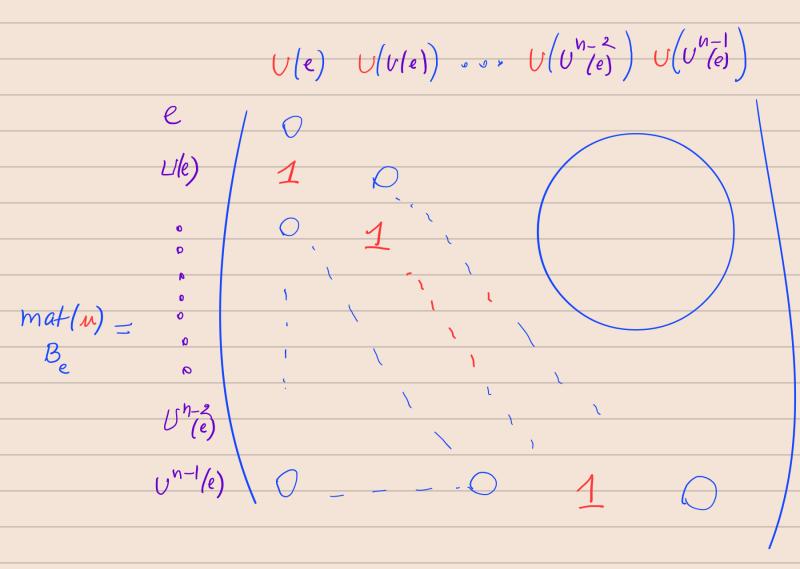
$$\lambda_0 v^{n-1}(e) = o$$

Pr. ELAMIRI www.iamateacher.org

=> (n=0), cor Un+(e) +0

(a) deviat: 1 (1e) + --+ 1 (n-1/e) =0 Composing from U^{N-2} . On obtain $\chi_2 U^{N-2}(e) = 0$ => (~ Un+(e) +0 De proche en proche, ou annulera tous les outres di. Be et un fin libre CQPD

- 1. Soient r et s deux entiers naturels et v la restriction de u^s à $\text{Im }(u^r)$.
 - a) Vérifier que $\operatorname{Im}(v) = \operatorname{Im}(u^{s+r})$.
 - **b)** Montrer que $Ker(v) \subset Ker(u^s)$.
 - **c)** Montrer que dim $(\operatorname{Ker}(u^{r+s})) \leq \dim (\operatorname{Ker}(u^r)) + \dim (\operatorname{Ker}(u^s)).$
 - **d)** En déduire que pour tout entier naturel i, dim $\left(\operatorname{Ker}\left(u^{i}\right)\right) \leq i$.
- **2.** On suppose de plus que $U^n = 0$.
 - a) Montrer que pour tout entier i tel que $1 \le i \le n$, dim $\left(\operatorname{Ker}\left(u^{i}\right)\right) = i$.
 - b) Montrer que l'indice de nilpotence de u est égal à n.
 - c) En déduire qu'il existe un vecteur e de E tel que $\mathcal{B}_e = (e, u(e), \dots, u^{n-1}(e))$ soit une base de E.
 - d) Ecrire la matrice de u dans la base \mathcal{B}_e .



Soit U une matrice de $\mathcal{M}_n(\mathbb{C})$, de rang $n-1$. On note u l'endomorphisme de E canoniquement associé a U . $(E=\mathbb{C}^n)$				
1. Soient r et s deux entiers naturels et v la restriction de u^s à $\operatorname{Im}(u^r)$.				
a) Vérifier que $\operatorname{Im}(v) = \operatorname{Im}(u^{s+r})$.				
b) Montrer que $\operatorname{Ker}(v) \subset \operatorname{Ker}(u^s)$.				
c) Montrer que dim $(\text{Ker}(u^{r+s})) \leq \text{dim}(\text{Ker}(u^r)) + \text{dim}(\text{Ker}(u^s)).$				
d) En déduire que pour tout entier naturel i , dim $\left(\operatorname{Ker}\left(u^{i}\right)\right) \leq i$.				
2. On suppose de plus que $U^n = 0$.				
a) Montrer que pour tout entier i tel que $1 \le i \le n, \dim(\operatorname{Ker}(u^i)) = i$.				
b) Montrer que l'indice de nilpotence de u est égal à n .				
c) En déduire qu'il existe un vecteur e de E tel que $\mathcal{B}_e = (e, u(e), \dots, u^{n-1}(e))$ soit une base de E .				
d) Ecrire la matrice de u dans la base \mathcal{B}_e .				
3. Montrer que deux matrices nilpotentes de $\mathcal{M}_n(\mathbb{C})$ de rang $n-1$ sont semblables.				
Soient LI et L' slux matrices mipotentes de Mn/C), she grang (n-1).				
Montron que Uct II' sont semba bes.				
u étant l'endomophisme Canoniquement associé à Ll, et Be la bair				
Ci-duus.				
On a $\operatorname{Ma}_{\ell}(u) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$				
\mathcal{B}_{e}				
`				
Don't Sembabes.				
10/				
el disselle la la madica II On Dura Austri				
D'ai L'et (0'. 1') sont sembabes. En procedent se même pour la matrice L'. On our a anssi				
que l'et () sont sembabes.				
and the search of the				
The Company of the Co				
1 0 /				

2 m L	of 11 sout semble	abes.	
			Fin Partie 2
	Pr. ELAMIRI	www.iamateacher.or	a

Partie 3: Réduction d'un endomorphisme particulier

Dans cette partie $\mathbb{K} = \mathbb{C}$. Soit f un élément de $\mathcal{L}(E)$ vérifiant $(\mathrm{id}_E, f, \ldots, f^{n-1})$ est libre.

On considère $\chi_f(X) = \prod_{k=1}^p (X - \lambda_k)^{m_k}$ le polynôme caractéristique χ_f de f, où $\lambda_1, \ldots, \lambda_p$ sont les valeurs propres distinctes de f de multiplicités respectives m_1, \ldots, m_p .

Pour tout entier k tel que $1 \le k \le p$, on pose $F_k = \text{Ker}((f - \lambda_k id_E)^{m_k})$

1. Montrer que, pour tout entier k tel que $1 \le k \le p$, le sous-espace vectoriel F_k est stable par f.

Soit 16k6p. Mondons que Fx 15t stable par f.

On a (f-) hid mk of Commutent.

D'on ker (f- > kidE) Me est state par f.

Card Fr est stable par f.

Dans cette partie $\mathbb{K} = \mathbb{C}$. Soit f un élément de $\mathcal{L}(E)$ vérifiant $(\mathrm{id}_E, f, \ldots, f^{n-1})$ est libre.

On considère $\chi_f(X) = \prod_{k=1}^p (X - \lambda_k)^{m_k}$ le polynôme caractéristique χ_f de f, où $\lambda_1, \ldots, \lambda_p$ sont les valeurs propres distinctes de f de multiplicités respectives m_1, \ldots, m_p .

Pour tout entier k tel que $1 \le k \le p$, on pose $F_k = \operatorname{Ker} \left(\left(f - \lambda_k \mathrm{id}_E \right)^{m_k} \right)$

- 1. Montrer que, pour tout entier k tel que $1 \le k \le p$, le sous-espace vectoriel F_k est stable par f.
- **2.** Montrer que $E = F_1 \oplus \ldots \oplus F_p$.

$$E = kar(0)$$

$$= kar(\chi_{f(1)}) \quad \left(\text{Caryley-Hamilton} \right)$$

$$= kar(\chi_{f(1)}) \quad \left(\text{Caryley-Hamilton} \right)$$

$$= kar(\chi_{f(1)}) \quad \left(\text{Caryley-Hamilton} \right)$$

De l'emposition des noyanx, su que les polynômes $(X-\lambda_2)^{m_2}$,..., $(X-\lambda_p)^{m_p}$

$$\mathbb{D}^{\prime}$$
 $E=F_1\oplus\ldots\oplus F_p$

On considère $\chi_f(X) = \prod_{k=1}^p (X - \lambda_k)^{m_k}$ le polynôme caractéristique χ_f de f, où $\lambda_1, \ldots, \lambda_p$ sont les valeurs propres distinctes de f de multiplicités respectives m_1, \ldots, m_p .

Pour tout entier k tel que $1 \le k \le p$, on pose $F_k = \text{Ker}((f - \lambda_k \text{id}_E)^{m_k})$

- 1. Montrer que, pour tout entier k tel que $1 \le k \le p$, le sous-espace vectoriel F_k est stable par f.
- **2.** Montrer que $E = F_1 \oplus \ldots \oplus F_p$.
- 3. Pour tout entier k tel que $1 \le k \le p$, on considère l'endomorphisme φ_k de F_k tel que, pour tout $x \in F_k$, $\varphi_k(x) = f(x) \lambda_k x$.
 - a) Montrer que pour tout entier k tel que $1 \le k \le p$, φ_k est un endomorphisme nilpotent de F_k .

Soit fre 2 (Fk) i l'endonorphone induit por f dur Fx (Fa étant stable part).

On a Phe & (Fx) et que (HIEFX, Ph(I) = f(x) - 7k)

$$= > \forall x \in F_{k,i} \, \ell_k(x) = \left(\oint_{\overline{k}} \lambda_k i d_{\overline{k}} \right) (x)$$

Fr = her (f-) id id =) HRE Fr, (f-) id =) MR

$$\Rightarrow \left(\delta_k - \lambda_k id\right)^{m_k} = 0$$

D'on le en un endomorphione vilpotent de FR

On considère $\chi_f(X) = \prod_{k=1}^p (X - \lambda_k)^{m_k}$ le polynôme caractéristique χ_f de f, où $\lambda_1, \ldots, \lambda_p$ sont les valeurs propres distinctes de f de multiplicités respectives m_1, \ldots, m_p .

Pour tout entier k tel que $1 \le k \le p$, on pose $F_k = \operatorname{Ker} ((f - \lambda_k \operatorname{id}_E)^{m_k})$

- 1. Montrer que, pour tout entier k tel que $1 \le k \le p$, le sous-espace vectoriel F_k est stable par f.
- **2.** Montrer que $E = F_1 \oplus \ldots \oplus F_p$.
- 3. Pour tout entier k tel que $1 \le k \le p$, on considère l'endomorphisme φ_k de F_k tel que, pour tout $x \in F_k$, $\varphi_k(x) = f(x) \lambda_k x$.
 - a) Montrer que pour tout entier k tel que $1 \le k \le p$, φ_k est un endomorphisme nilpotent de F_k .
 - b) Déterminer, pour tout entier k tel que $1 \le k \le p$, la dimension de F_k .

Soit 16k6p. Ou a 4 m = 0, cad (fk -) kid Fk) mk = 0

Doir My (x) / (X- > h) mh

Par smite > k est / vinque valuer propre de fk.

D'où $X_{j_k}(x) = (x - \lambda_k)^{\text{olim } F_k}$, puis que $f_k \in \mathcal{Z}(F_k)$.

D'ante part, og sait gne X, (x) / X, (x)

 2^{i} $(X - \lambda_{i})^{i}$ $\int_{i=1}^{p} (X - \lambda_{i})^{m_{i}} i m_{i}$ étant la multiplicité de λ_{i} .

Par smite dim (Fh) < mp.

Ainsi: Y 1 & h < p, dm (Fh) < mh

The second of t

St $\chi_j(x) = \pi(x-\lambda_k)^{m_k}$ \Rightarrow $\dim(E) = \sum_{k=1}^{p} m_k$

Albers:
$$\sum_{k=1}^{p} m_k - \sum_{k=1}^{p} \dim(f_k)$$

$$\Rightarrow \sum_{k=1}^{p} (m_k - \dim(f_k)) = 0$$

$$\lim_{k=1}^{p} (m_k - \dim(f_k)) = 0$$

On considère $\chi_f(X) = \prod_{k=1}^p (X - \lambda_k)^{m_k}$ le polynôme caractéristique χ_f de f, où $\lambda_1, \ldots, \lambda_p$ sont les valeurs propres distinctes de f de multiplicités respectives m_1, \ldots, m_p .

Pour tout entier k tel que $1 \le k \le p$, on pose $F_k = \operatorname{Ker} \left(\left(f - \lambda_k \mathrm{id}_E \right)^{m_k} \right)$

- 1. Montrer que, pour tout entier k tel que $1 \le k \le p$, le sous-espace vectoriel F_k est stable par f.
- **2.** Montrer que $E = F_1 \oplus \ldots \oplus F_p$.
- 3. Pour tout entier k tel que $1 \le k \le p$, on considère l'endomorphisme φ_k de F_k tel que, pour tout $x \in F_k$, $\varphi_k(x) = f(x) \lambda_k x$.
 - a) Montrer que pour tout entier k tel que $1 \le k \le p$, φ_k est un endomorphisme nilpotent de F_k .
 - b) Déterminer, pour tout entier k tel que $1 \le k \le p$, la dimension de F_k .
 - c) Montrer que, pour tout entier k tel que $1 \le k \le p$, l'indice de nilpotence de φ_k est m_k .

Still 16h6p. Mondrow) que l'indice de vilpotance de le ext mp.

On a déje que le =0:
Alors il reste à mondra que le to mproson que le =0.

Alors (f-\lambda_e id_e) =0 dur Fe.

St on a que (t it | (f-\lambda_e) id_e) =0 dur Fe.

En plus, les (f-\lambda_e id_e) =0 dur Fe.

En plus, les (f-\lambda_e id_e) =0 dur Fe.

Alors lux à dux:

Alors lux a dux:

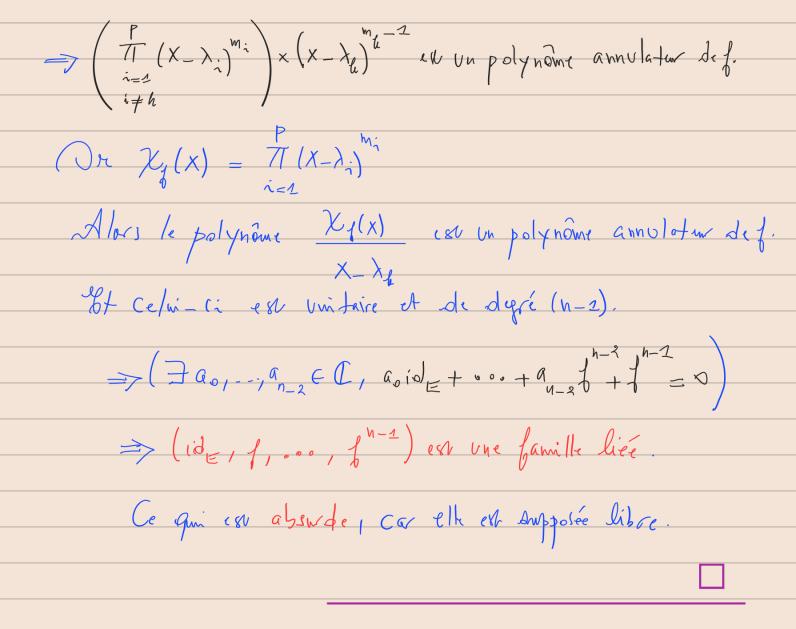
Alors lux composée (f-\lambda_e id_e) =0

itée

And Chaque F_i , pour tent $1 \le i \le p$,

Or $K = \bigoplus_{i=1}^{p} F_i$, alors $\left(\frac{p}{1 - \lambda_i i d_E} \right)^{m_i} \circ \left(\frac{1}{1 - \lambda_i i d_E} \right)^{m_i} = 0$

And E enfier.



On considère $\chi_f(X) = \prod_{k=1}^p (X - \lambda_k)^{m_k}$ le polynôme caractéristique χ_f de f, où $\lambda_1, \ldots, \lambda_p$ sont les valeurs propres distinctes de f de multiplicités respectives m_1, \ldots, m_p .

Pour tout entier k tel que $1 \le k \le p$, on pose $F_k = \operatorname{Ker}((f - \lambda_k \operatorname{id}_E)^{m_k})$

- Montrer que, pour tout entier k tel que $1 \le k \le p$, le sous-espace vectoriel F_k est stable par f.
- Montrer que $E = F_1 \oplus \ldots \oplus F_p$.
- Pour tout entier k tel que $1 \le k \le p$, on considère l'endomorphisme φ_k de F_k tel que, pour tout $x \in F_k$, $\varphi_k(x) = f(x) - \lambda_k x.$
 - a) Montrer que pour tout entier k tel que $1 \le k \le p$, φ_k est un endomorphisme nilpotent de F_k .
 - b) Déterminer, pour tout entier k tel que $1 \le k \le p$, la dimension de F_k .
 - c) Montrer que, pour tout entier k tel que $1 \le k \le p$, l'indice de nilpotence de φ_k est m_k .
- Montrer qu'il existe une base \mathcal{B} de E dans laquelle la matrice de f est diagonale par blocs, tel que chaque bloc

est une matrice de
$$\mathcal{M}_{m_k}(\mathbb{C})$$
 de la forme $A_k = \left(\begin{array}{cccccc} \lambda_k & 0 & \dots & 0 \\ 1 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & \lambda_k \end{array} \right)$

On A F = F1 @ ... @ Fp Notons pour Chaque 1 & k & p, be & X(Fe) l'endomosphisme induit pour f sur Fg. Soit B = B1 U ... UBp une base adaptée à Cette décomposition. On a; mat(1) = diag (mat(1), ..., mat(1)); matrie diagonale por blocs.

By en que les Frant stalles port. D'ante port, pour tout 1 th & p, on a: le = fle - 1/2 id Fle Cad: fk = (k +)k id Fk 2^{l} on $met(l_h) = mat(l_h) + mat(\lambda_h id_{fh})$ $B_h \qquad B_h \qquad B_h$

$$A = \begin{pmatrix} \lambda_k \\ 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ pour tout } 1 \leq k \leq p$$

$$\text{mat(1)} = \text{diag} \left(\text{mat(d_1)}, 0.00, \text{mat(f_p)} \right)$$

$$B = B_1$$

Fin Partie 3

Partie 4: Cycles

Dans cette partie, on prend $\mathbb{K} = \mathbb{C}$. On dit qu'un endomorphisme f de E est cyclique d'ordre un entier naturel non nul p s'il existe x_0 de E vérifiant les conditions :

- $f^p(x_0) = x_0$.
- $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est une famille génératrice de E dont les éléments sont distincts deux a deux.

On dit alors que la famille $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est un p- cycle de f.

- 1. Soit $(x_0, f(x_0), \ldots, f^{p-1}(x_0))$ un p- cycle de f.
 - a) Montrer que $f^p = id_E$.

Il suffit de montrer que ple et ide coincident en tors les vecteurs de la famille génératrice (xo, f(xo), --, ft-2(xo).

Soit alors of th & p-1. Ova;

$$=id_{\mathcal{E}}\left(f^{k}(n_{0})\right)$$

- $f^p(x_0) = x_0$.
- $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est une famille génératrice de E dont les éléments sont distincts deux a deux.

On dit alors que la famille $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est un p- cycle de f.

- 1. Soit $(x_0, f(x_0), \ldots, f^{p-1}(x_0))$ un p- cycle de f.
 - a) Montrer que $f^p = id_E$.
 - **b)** Montrer que l'ensemble $F_{x_0} = \{k \in \mathbb{N}^* \mid (x_0, f(x_0), \dots, f^{k-1}(x_0)) \text{ est une famille libre}\}$ admet un maximum noté γ .

Fre est une partie de 1N.

Pour mondres qu'elle admet un maximum, cad un plus grand élément, il reste à montrer que Fr # p et Fromajorée.

i) Fx + 0?

On a 16 Fair Car la famille (No) est libre, principare 70. 70.

To to, car sinon, on await no =0 et par suite E=20} vu la famille guiradice nulle; absorde Car E + 304

in) Fred majoré? Soit KEFy.

On a (no, f(no), --, f^{k-2}(no)) est libre de E.

=> card (no, 1(no), -, 1 (no)) & olim(E)

=> k < n.

Aim: (Yk6Fnor le < n)

Don Fro en majore.

On dit alors que la famille $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est un p- cycle de f.

- 1. Soit $(x_0, f(x_0), \ldots, f^{p-1}(x_0))$ un p- cycle de f.
 - a) Montrer que $f^p = id_E$.
 - **b)** Montrer que l'ensemble $F_{x_0} = \{k \in \mathbb{N}^* \mid (x_0, f(x_0), \dots, f^{k-1}(x_0)) \text{ est une famille libre}\}$ admet un maximum noté γ .
 - c) i) Montrer que pour tout entier k tel que $k \geq \gamma$, $f^{k}(x_0) \in \text{Vect}(x_0, f(x_0), \dots, f^{\gamma-1}(x_0))$.

On a
$$\gamma = \max \left(\frac{E_{70}}{K_{70}} \right) = \max \left(\frac{1}{2} \frac{k + 1}{2} \frac{N^{2}}{(n_{0})} \right)$$
 and like $\frac{1}{2} \frac{1}{2} \frac{N}{(n_{0})} + \frac{1}{2} \frac{N}{(n_{0})} +$

Pr. ELAMIRI www.iamateacher.org

Par Smite, on our ait que do= === dy=0; obsurde car il
Ahrs dy \$0 of do not out dy 1 (no) =0
$\frac{1}{\sqrt{(n_0)}} = \frac{\sqrt{-1}}{\sqrt{2}} - \frac{\sqrt{k}}{\sqrt{(n_0)}}$
Par Snite, 17 (no) & Vect (no, f(no),, f (no))
Horiolité:
Soil 127, y. Supposons que f (10) E Vect (no, f(10),, f (no)).
64 mondrons que 1 (no) E Vect(no, 1(no),, 1 (no)).
On a 1th (20) & Vect (20, f(20),, f(20))
$\Rightarrow \int_{0}^{h} (N_{0}) = d_{0}N_{0} + \dots + d_{\gamma-2} \int_{0}^{\gamma-2} (N_{0}) + d_{\gamma-2} \int_{0}^{\gamma-1} (N_{0$
$ \begin{array}{c} $
$\frac{1}{\sqrt{100}} = \frac{1}{\sqrt{100}} + \frac{1}$
E VICH (No, f(No) 1, f (No))
(E V (C+ (No , f (No) ,, f (No))
mentré q'-dusus
$\frac{h+1}{h+1}$
2'on /2-2 (no) & Vect(no, f(no),, f(no))

Dans cette partie, on prend $\mathbb{K} = \mathbb{C}$. On dit qu'un endomorphisme f de E est cyclique d'ordre un entier naturel non nul p s'il existe x_0 de E vérifiant les conditions :

- $f^p(x_0) = x_0$.
- $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est une famille génératrice de E dont les éléments sont distincts deux a deux.

On dit alors que la famille $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est un p- cycle de f.

- 1. Soit $(x_0, f(x_0), \ldots, f^{p-1}(x_0))$ un p- cycle de f.
 - a) Montrer que $f^p = id_E$.
 - **b)** Montrer que l'ensemble $F_{x_0} = \{k \in \mathbb{N}^* \mid (x_0, f(x_0), \dots, f^{k-1}(x_0)) \text{ est une famille libre}\}$ admet un maximum noté γ .
 - c) i) Montrer que pour tout entier k tel que $k \geq \gamma$, $f^{k}(x_{0}) \in \operatorname{Vect}(x_{0}, f(x_{0}), \dots, f^{\gamma-1}(x_{0}))$.
 - ii) Montrer que $\gamma = n$.

On a:
$$\forall k \gamma, \gamma, f''(n_0) \in V(C(n_0, f(n_0)) \cdots, f'(n_0))$$
 $\Rightarrow \forall k \in N, f''(n_0) \in V(C(n_0, f(n_0)) \cdots, f'(n_0))$
 $\Rightarrow \forall 0 \leq k \leq p-1, f''(n_0) \in V(C(n_0, f(n_0)) \cdots, f'(n_0))$
 $\forall t \neq t \text{ puis que} (n_0, f(n_0), \dots, f^{p-1}(n_0)) \text{ est une famille quies a vice } de E$

Alors $\forall k \in K, k \in V(C(n_0, f(n_0)) \cdots, f'(n_0))$

Par Anite $(x_{0,1}f(x_{0}), \dots, f^{p-1}(x_{0}))$ est une famille quies trice $de E$.

Ore $(x_{0,1}f(x_{0}), \dots, f^{p-1}(x_{0}))$ est libre.

Alors $(x_{0,1}f(x_{0}), \dots, f^{p-1}(x_{0}))$ as we have all E .

D'un dui $E = \gamma$ (An cardinal).

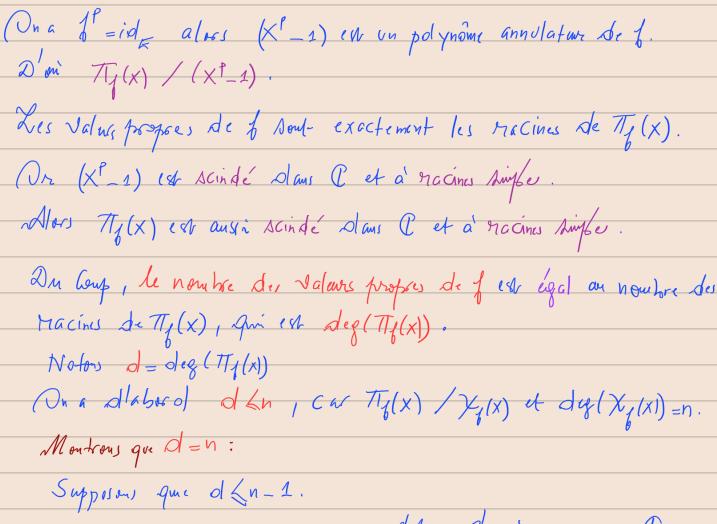
Cad $\gamma = N$

Dans cette partie, on prend $\mathbb{K} = \mathbb{C}$. On dit qu'un endomorphisme f de E est cyclique d'ordre un entier naturel non nul p s'il existe x_0 de E vérifiant les conditions :

- $f^p(x_0) = x_0$.
- $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est une famille génératrice de E dont les éléments sont distincts deux a deux.

On dit alors que la famille $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est un p- cycle de f.

- 1. Soit $(x_0, f(x_0), \ldots, f^{p-1}(x_0))$ un p- cycle de f.
 - a) Montrer que $f^p = id_E$.
 - **b)** Montrer que l'ensemble $F_{x_0} = \{k \in \mathbb{N}^* \mid (x_0, f(x_0), \dots, f^{k-1}(x_0)) \text{ est une famille libre}\}$ admet un maximum noté γ .
 - c) i) Montrer que pour tout entier k tel que $k \geq \gamma$, $f^{k}(x_{0}) \in \operatorname{Vect}(x_{0}, f(x_{0}), \dots, f^{\gamma-1}(x_{0}))$.
 - ii) Montrer que $\gamma = n$.
 - iii) Déterminer le nombre des valeurs propres distinctes de f.



On a $\pi_{f}(x) = a_{0} + a_{1}x + \dots + a_{d-1}x^{d-1} + x^{d}$, in $a_{0}, \dots, a_{d-1} \in \mathbb{C}$ of $\pi_{f}(x) = 0 \Rightarrow a_{0} \cdot a_{E} + a_{1}x + \dots + a_{d-1}x^{d-1} + x^{d} = 0$

Don' (ide, 1,, 6) est vue famille liéé.
Et en a d (n-1, alors (id 11-11) es liée
Or (no, f(no),, f (no)) est like (Car y = n.
<u> </u>
D'on (id 1, 1, -, 1 h-1) ea anvi libre.
Ce qui est absurde.
Grafin (d=n), en le nombre de volus pogres de l
•
(distincter deux à deux.)

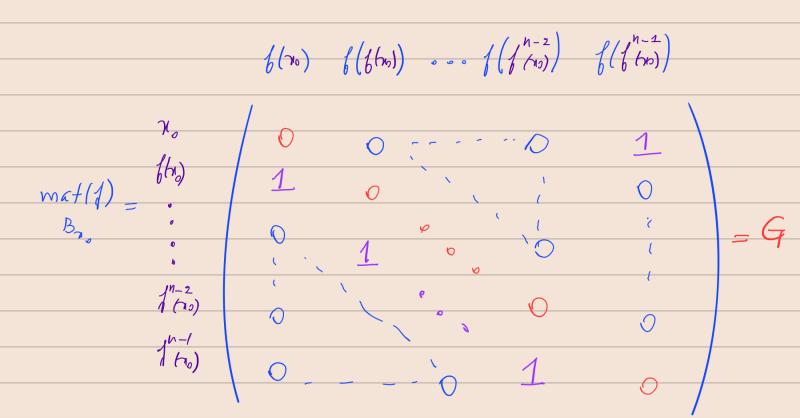
- **2.** Soit $\mathcal{B}_{x_0} = (x_0, f(x_0), \dots, f^{n-1}(x_0))$ un *n*-cycle de f.
 - a) Justifier que \mathcal{B}_{x_0} est une base de E.

On a B = (no, 1 (no), ..., 1 (no)) est une famille guératrice de E.

St Card (Bno) = dim (E).

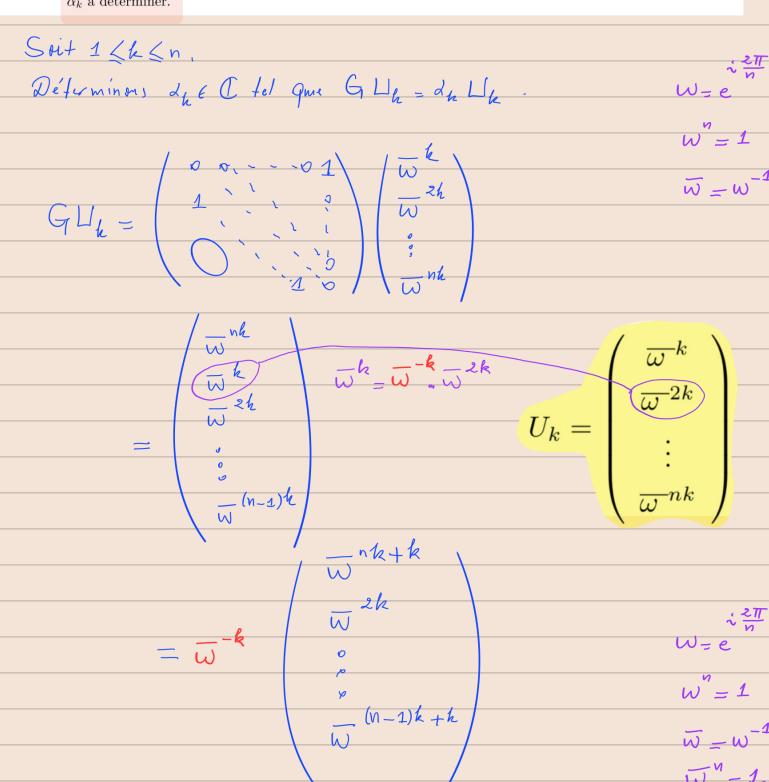
D'on B est une bele de E.

- **2.** Soit $\mathcal{B}_{x_0} = (x_0, f(x_0), \dots, f^{n-1}(x_0))$ un *n*-cycle de f.
 - a) Justifier que \mathcal{B}_{x_0} est une base de E.
 - b) Déterminer la matrice G de l'endomorphisme f dans la base B_{x_0} .

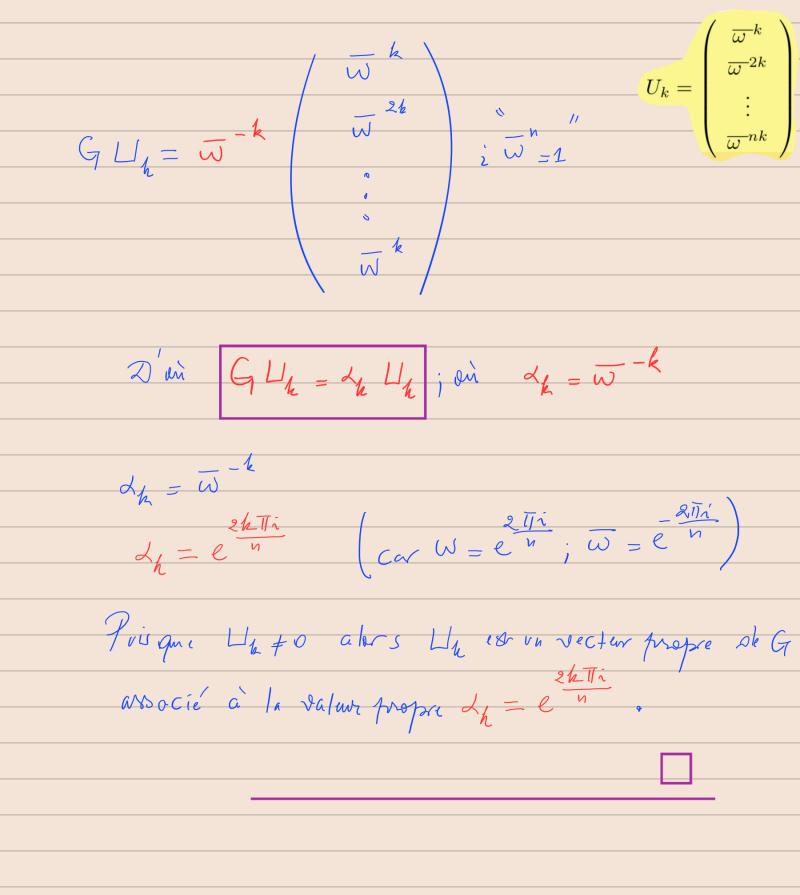


- **2.** Soit $\mathcal{B}_{x_0} = (x_0, f(x_0), \dots, f^{n-1}(x_0))$ un *n*-cycle de f.
 - a) Justifier que \mathcal{B}_{x_0} est une base de E.
 - b) Déterminer la matrice G de l'endomorphisme f dans la base B_{x_0} .
 - c) On pose $\omega = e^{i\frac{2\pi}{n}}$ et pour tout $k \in \mathbb{Z}$, $U_k = \begin{pmatrix} \overline{\omega}^k \\ \overline{\omega}^{2k} \\ \vdots \\ \overline{\omega}^{nk} \end{pmatrix}$, où $\overline{\omega}$ désigne le conjugué de ω .

Pour tout entier k tel que $1 \le k \le n$, vérifier que U_k est un vecteur propre de G associé à une valeur propre α_k à déterminer.



www.iamateacher.org Pr. ELAMIRI



Soit $M = (m_{k,l})_{1 \le k,l \le n}$ de $\mathcal{M}_n(\mathbb{C})$, telle que $m_{k,l} = \overline{\omega}^{kl}$. On note $\overline{M} = (\overline{m}_{k,l})_{1 \le k,l \le n}$, où $\overline{m}_{k,l}$ est le conjugué de $m_{k,l}$.

(on a w = 1 = w -1)

a) Calculer $M \overline{M}$.

$$(MM)_{lj} = \sum_{k=1}^{n} M_{lk} \cdot M_{kj} \qquad (Ml_{k} = M_{lk} - \overline{W}_{kj} - \overline{M}_{kj} = \overline{W}_{kj} = W^{kj})$$

$$= \sum_{k=1}^{n} \overline{W}_{lk} \cdot W^{kj} \qquad (m = \overline{W}_{lk} - \overline{W}_{lk} - \overline{W}_{kj} - \overline{W}_{kj} - \overline{W}_{kj} - \overline{W}_{kj})$$

$$= \sum_{k=1}^{n} W^{-ll_{k}} W^{kj}$$

$$= \sum_{k=1}^{n} W^{kj-lk}$$

$$= \sum_{l=1}^{n} W^{kj-lk}$$

$$(MM)_{l_0} = \sum_{k=2}^{n} (\omega^{i-l})^k$$

$$(M\overline{M})_{ij} = \sum_{k=1}^{n} 1 = n$$

$$(MM)_{l_0} = \sum_{k=2}^{n} (\omega^{j-l})^k$$

Pr. ELAMIRI

www.iamateacher.org

- **3.** Soit $M=(m_{k,l})_{1\leq k,l\leq n}$ de $\mathcal{M}_n(\mathbb{C})$, telle que $m_{k,l}=\overline{\omega}^{kl}$. On note $\overline{M}=(\overline{m}_{k,l})_{1\leq k,l\leq n}$, où $\overline{m}_{k,l}$ est le conjugué de $m_{k,l}$.
 - a) Calculer $M \overline{M}$.
 - b) En déduire que $M \in GL_n(C)$ et calculer M^{-1}

On a MM = nT

$$\Rightarrow M.\left(\frac{1}{n}M\right) = T_{u}$$

2 m Med invoide (cad MEGL(C))

et gur $M^{-1} = \frac{1}{N}$

4. Soit
$$(b_0, b_1, \dots, b_{n-1}) \in \mathbb{C}^n$$
 et $H = \begin{pmatrix} b_0 & b_{n-1} & \dots & b_2 & b_1 \\ b_1 & \ddots & \ddots & & b_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ b_{n-2} & & \ddots & \ddots & b_{n-1} \\ b_{n-1} & b_{n-2} & \dots & b_1 & b_0 \end{pmatrix}$.

a) Montrer que H est diagonalisable.

$$H = \begin{pmatrix} b_{0} & b_{1} \\ b_{2} & b_{2} \\ b_{3} & b_{4} \\ b_{1} & b_{2} \\ b_{2} & b_{3} \\ b_{1} & b_{2} \\ b_{2} & b_{3} \\ b_{3} & b_{4} \\ b_{4} & b_{5} & b_{5} \\ b_{5} & b_{5} & b_{5} \\ b_{6} & b_{5} & b_{5} \\ b_{7} & b_{7} & b_{7} \\ b_{7} & b_{7} \\ b_{7} & b_{7} & b_{7} \\ b_{7}$$

$$=G^{n-1}$$

$$H = b_n I_n + b_n G + b_n G + b_n G$$

$$H = \sum_{k=0}^{n-1} b_k G^k$$

Danke part, on a: (+ 1 Sh. Sh., G. Lle = de Lle) i Gpossiolant eletti
ainsi n valurs proposes distinctes, qui sont les en iles
McCines nème de l'unité.
G 18t diagonalisable.
D'on (G. 18t. diagonalisable. d_111, d_n ses values propres distinctes 2 à 2
$\Rightarrow \begin{cases} \exists P \in GL_n(C), G = P D P^{-1} \\ \exists n D = Aiag(d_{1}, \dots, d_{n}) \end{cases}$
$\int dn = \Delta \log \left(d_1 - d_n \right)$
$H = \sum_{k=0}^{n-1} b_k G^k$
$= \sum_{k=1}^{N-2} b_k P D^k P^{-1}$
k=0
$H = P \cdot \left(\frac{\sum_{k=0}^{N-1} b_k D^k}{k \cdot b_k} \right) \cdot P^{-1}$
182 une matrice diagonale
D'ai Hed diagonalisable

Pr. ELAMIRI www.iamateacher.org

4. Soit
$$(b_0, b_1, \dots, b_{n-1}) \in \mathbb{C}^n$$
 et $H = \begin{pmatrix} b_0 & b_{n-1} & \dots & b_2 & b_1 \\ b_1 & \ddots & \ddots & b_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ b_{n-2} & \ddots & \ddots & b_{n-1} \\ b_{n-1} & b_{n-2} & \dots & b_1 & b_0 \end{pmatrix}$

- a) Montrer que H est diagonalisable.
- b) Déterminer les valeurs propres de H et une base de \mathbb{C}^n formée de vecteurs propres de H.

On
$$A: H = P.\begin{pmatrix} \sum_{k=0}^{n-1} b_k D^k \end{pmatrix}. P^{-1}$$

$$H = P.Q(D). P^{-1}$$

$$Q(D) = \sum_{k=0}^{n-1} b_k D^k$$

$$Q(D) = diag(Q(d_1), \dots, Q(d_n))$$

$$H = P \cdot Q(D) \cdot P^{-1}$$

D'in les valuers propres de
$$H$$
 sont $Q(d_1)$, ..., $Q(d_n)$
 m' $Q(x) = \sum_{k=0}^{\infty} b_k x^k$

Pr. ELAMIRI

www.iamateacher.org

Par une bare de vectous propres s

One: (#1646n, GUL = dh Uh)

> (#1666n, Q(G).Ub = Q(dh).Ub)

+ 1666n, H.Ub = Q(dh).Ub

(U1,...,Un) 181 une base de vectours propres de H

Din pri Up = w

i w = e

i not

Fin Partie 4

Partie 5 : La dimension maximale d'un sous-espace vectoriel des matrices nilpotentes

On note \mathcal{T} le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ des matrices triangulaires supérieures dont la diagonale est composée seulement par des 0. On désigne par $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ et par \mathcal{N} l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{R})$.

1. Déterminer la dimension de \mathcal{T} .

Soit
$$A = (A_{i\bar{0}}) \in T$$
, on a:

$$A = \sum_{1 \le i \le j \le n} A_{i\bar{0}} E_{i\bar{j}}$$

Alinh:
$$alin(7) = \frac{n^2 - n}{2}$$

- 1. Déterminer la dimension de \mathcal{T} .
- 2. Montrer que toute matrice nilpotente est semblable à une matrice appartenant à \mathcal{T} .

Soit A un matrice inspotente.

On a $\chi_{A}(x) = x$.

A 181 trigonalisable d'unique valur propre 0.

A est surfate à une matrice triangulaire dufériere D.

A ne outient dans sa diagonale que o

Alms DET.

- 1. Déterminer la dimension de \mathcal{T} .
- 2. Montrer que toute matrice nilpotente est semblable à une matrice appartenant à \mathcal{T} .
- 3. Montrer que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{T}$.

ii)
$$d_{im} M_n(IR) = d_{im}(S_n(IR)) + d_{im}(T)$$
?

 $d_{im} M_n(IR) = n^2$
 $d_{im} I_n(IR) = n^2 + n$
 $d_{im} I_n(IR) = n$
 d_{im}

- 1. Déterminer la dimension de \mathcal{T} .
- 2. Montrer que toute matrice nilpotente est semblable à une matrice appartenant à \mathcal{T} .
- **3.** Montrer que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{T}$.
- 4. Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ contenu dans \mathcal{N} telle que $\dim(F) > \frac{n(n-1)}{2}$. Montrer que $\dim(\mathcal{S}_n(\mathbb{R}) \cap F) > 0$.

- 1. Déterminer la dimension de \mathcal{T} . = $\frac{n(n-1)}{3}$
- 2. Montrer que toute matrice nilpotente est semblable à une matrice appartenant à \mathcal{T} .
- **3.** Montrer que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{T}$.
- **4.** Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ contenu dans \mathcal{N} telle que $\dim(F) > \frac{n(n-1)}{2}$. Montrer que $\dim(\mathcal{S}_n(\mathbb{R}) \cap F) > 0$.
- 5. En déduire la dimension maximale d'un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ contenu dans \mathcal{N} .

Raisonners par l'abrande, et supposons que dim (F) > n(n-2) Alors Algori 4), dim (Sm(R) (F) > 0

Ona AEF et FCW, aloss A est milpotente.
Et ena AESn(IR), aloss A est diagonalis. Se

$$\Rightarrow \mathbb{O}_{=}\mathbb{O}$$
.

Ainsi on . (HAESILIR) ()F, A=0)

On a sinsi montré que si F (81 un ser de $M_n(R)$ contenu dans \mathcal{N} , alors $\dim(F) \leqslant \frac{n(n-2)}{2}$.

St on a que T ess un ser de Mn(R) Ontenu dans N et vorifie dim (T) = n(n-1) (d'après 10).

D'en enfin:

Za dimension maximale d'un seu de Mn(IR)
Contenu dans N est égale à n(n-1)

Fin Partie 5

- FIN DE L'ÉPREUVE -